、、[1]。825[2]。。。[3]。[4]。nitrite-dependentanaerobicmethaneoxidationn-DAMO-928kJ/mol[5]。DAMO[6]。。DAMO。DAMODAMO。DAMODAMO、。DAMO。1DAMO2006RAGHOEBARSINGn-DAMO[6]。NC10NO3-。ETTWINGDAMO1NO2-NO、N2、O2。O2CH4CH3OHCO2。NC10“CandidatusMethylomirabilisoxyfera”[7]。121111.3610212.100049、、、。。X703.1A1000-3770(2017)12-0008-0062017-03-1551208491IUEQN2013041994-0592-6190538jswang@iue.ac.cnzjzhang@iue.ac.cnDOI:10.16796/j.cnki.1000-3770.2017.12.0024312201712Vol.43No.12Dec.,201781DAMOFig.1SchematicdiagramofmetabolicpathwayofDAMOmicroorganismWUM.oxyfer4[8]。1。DAMODAMOO2[8]。pMMONO2-NirSM.oxyferaDAMOM.oxyfera[9]。ETTWINGDAMO80%DAMO10%。。DAMONO2-DAMO[10]。HUDAMONO3-/NO2-DAMO[11]。NO3-NO2-[11]。NO3-NO2-NO3-DAMO[10]。NOO2。DAMODAMONO3-DAMO。DAMODAMODAMONO3-NO2-DAMO。SO42-、NO3-、NO2-、Mn4+、Fe3+、ClO4-HAsO42-[5,12]。。2DAMO2006DAMO[6]。。ZHUDAMO[13]。80~100cmNC10。SBR10DAMO。。[14]。DAMO[15]。WANG30~70cmDAMO。DAMO[16-17]。KOJIMAq-PCR、CARD-FISHBiwa“M.oxyfera”[16]。ZHUDAMO[18]。LUESKEN109DAMO。112dNO2--N0.4mmol/d[19]。、DAMO[20]。WUDAMO[21]。DAMO。、、、[22]。DAMO。9。3DAMODAMO。DAMO、DAMO、DAMOAnammox[6,11,23-26]。1。3.1DAMODAMO。RAGHOEBARSING2006[6]。、DAMO100d。DAMO。、DAMODAMO。35℃pH7~8。DAMOO2DO0.2mg/L。1NO3-DAMO1DAMODAMO[10]。HUDAMODAMO[11]。DAMODAMONC10DAMO。3.2DAMO-AnammoxNO2-。。HUDAMOAnommox2[23]。2DAMOAnammoxNO2-。AnammoxNO3-NO3-DAMO。DAMOAnammoxDAMO、DAMOAnammox3DAMO。3.3DAMODAMOAnammox。YUANDAMOAnammoxpH/℃①/d②/(mg·L-1·d-1)12006-2016DAMOTab.1ComparisonofkeyparametersaboutDAMOmicroorganismenrichmentexperimentsinthelastdecadeDAMODAMODAMOSBRSBRMBRSBRSBR6.8~7.36.9~7.56.5~8.07.3~7.77.5~8.020~2330203535300~350120~150200~3001002005.633.536.040.332.9[19][28][29][30][31]DAMOAnammox①②。SBRMBRSBRDAMO7.5~8.57.0~8.17.3~7.63532~3730135100~20080~10057.0174.0[32][33][24]2DAMOAnammoxFig.2SchematicdiagramofmetabolicpathwayofDAMOmicroorganismwithAnammox431210N560mg/(L·d)470mg/(L·d)。DAMOAnammoxNO3--NNO2--NDAMOAnammox。3NO2--NNH4+-NNO3--N。1dTN1kg/(L·d)[27]。4DAMO、。。[34]。DAMOC/N。DAMO。DAMO。4.1CH4DAMO。DAMODAMO。HE[35]。648.3kPa·L·h/mmol。1631kPa·L·h/mmolDAMO。DAMO。。。[36]。4.2HU22、35、45℃DAMO。22℃DAMO35℃DAMODAMO45℃。2350d22℃0.11mmol/(L·d)35℃2.0mmol/(L·d)[31]。RAGHOEBARSING25℃DAMO[6]。ETTIWG25℃30℃DAMO[10]。DAMO。4.3O21DAMOO2。LUESKENO2DAMO。2%8%DAMO43%19%[37]。DAMOpH、、[38]。。5。DAMO。NOO2。DAMO“CandidatusMethylomirabilisoxyfera”DAMO。DAMO、11。。“”DAMO。。DAMOAnammox。2、。DAMO。[39]。、。。C/NCH4、[40-41]。DAMO。DAMO。[1]NAZARIESL,MURRELLJC,MILLARDP,etal.Methane,microbesandmodels:fundamentalunderstandingofthesoilmethanecycleforfuturepredictions[J].Environmentalmicrobiology,2013,15(9):2395-2417.[2]SHINDELLDT,FALUVEGIG,KOCHDM,etal.Improvedattributionofclimateforcingtoemissions[J].Science,2009,326(5953):716-718.[3]HINRICHSKU,BOETIUA.Theanaerobicoxidationofmethane:newinsightsinmicrobialecologyandbiogeochemistry[M].OceanMarginSystems,SpringerBerlinHeidelberg,2002:457-477.[4]HAD,BUNDERVOETB,VERSTRAETEW,etal.Asustainable,carbonneutralmethaneoxidationbyapartnershipofmethaneoxidizingcommunitiesandmicroalgae[J].WaterResearch,2011,45(9):2845.[5],,.[J].,2012,39(5):702-710.[6]RAGHOEBARSINGAA,POLA,PAS-SCHOONENKT,etal.Amicrobialconsortiumcouplesanaerobicmethaneoxidationtodenitrification[J].Nature,2006,440(7086):918-921.[7]ETTWIGKF,BUTLERMK,PASLIERDL,etal.Nitrite-drivenanaerobicmethaneoxidationbyoxygenicbacteria[J].Nature,2010,464(7288):543-548.[8]WUML,VIRESSimonDe,ALENTA,etal.Physiologicalroleoftherespiratoryquinoloxidaseintheanaerobicnitrite-reducingmeth-anotroph'CandidatusMethylomirabilisoxyfera'[J].Microbiology,2010,157(3):890-898.[9]WUML,ALENTA,DONSELAAREG,etal.Co-localizationofparticulatemethanemonooxygenaseandcd1nitritereductaseinthedenitrifyingmethanotroph'CandidatusMethylomirabilisoxyfera'[J].FemsMicrobiologyLetters,2012,334(1):49-56.[10]ETTWIGKF,SHIMAS,PAS-SCHOONENKT,etal.DenitrifyingbacteriaanaerobicallyoxidizemethaneintheabsenceofArchaea[J].Environmentalmicrobiology,2008,10(11):3164-3173.[11]HUShihu,ZENGRJ,KELLERJurg,etal.Effectofnitrateandnitriteontheselectionofmicroorganismsinthedenitrifyinganaerobicmethaneoxidationprocess[J].Environmentalmicrobiologyreports,2011,3(3):315-319.[12]CUIMengmeng,MAAnzhou,QIHongyan,etal.Anaerobicoxidationofmethane:anactivemicrobialprocess[J].Microbiologyopen,2014,4(1):1.[13]ZHUBaoli,DIJKGijs,SMOLDERSAJP,etal.Anaerobicoxidizationofmethaneinaminerotrophicpeatland:enrichmentofnitrite-dependentmethane-oxidizingbacteria[J].AppliedandEnvironmentalMicro-biology,2012,78(24):8657-8665.[14]LUY,CONRADR.Insitustableisotopeprobingofmethanogenicarchaeainthericerhizosphere[J].Science,2005,309(5737):1088-1090.[15]WANGYu,ZHUGuibing,HARHANGIHR,etal.Co-occurrenceanddistributionofnitrite-dependentanaerobicammoniumandmethane-oxidizingbacteriainapaddysoil[J].FEMSmicrobiologyletters,2012,336(2):79-88.[16]KOJIMAHisaya,TSUTSUMIMasazumi,ISHIKAWAKanako,etal.Distributionofputativedenitrifyingmethaneoxidizingbacteriainsedimentofafreshwaterlake,LakeBiwa[J].Systematic&AppliedMicrobiology,2012,35(4):233.[17]SCHINKB,DEUTZMANNJS.AnaerobicoxidationofmethaneinsedimentsofLakeConstance,anoligotrophicfreshwaterlake[J].Appliedandenvironmentalmicrobiology,2011,77(13):4429-