我们学过哪几种判定三角形全等的方法?1、全等三角形概念:三条边对应相等,三个角对应相等。2、全等三角形判定条件(一)三边对应相等的两个三角形全等。简称“边边边”或“SSS”工人师傅常用角尺平分一个任意角.做法如下:如图,AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC便是AOB的平分线.为什么?中,和解:在CNOCMOOMABNCCOCOCNCMONOM,=,=,=.AOBOC的平分线是.SSSCNOCMO)(≌.CONCOM=(全等三角形对应角相等)(已知)(已知)(公共边)小明做了一个如图所示的风筝,他想去验证∠BAC与∠DAC是否相等,但手头却只有一把足够长的尺子。你能帮助他想个方法吗?说明你这样做的理由。ABDC思考CBDAFEDB思考已知AC=FE,BC=DE,点A、D、B、F在一条直线上,AD=FB.要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?解:要证明△ABC≌△FDE,还应该有AB=DF这个条件∵AD=FB∴AD+DB=FB+DB即AB=FD思考.FDABDBFBDBADFBAD即,,证明:FDBABC中,和在FBACDBBCFDAB(已知),=(已知),=(已证),=≌.SSSFDBABC)(CBDAFEDB已知AC=FE,BC=DE,点A、D、B、F在一条直线上,AD=FB.要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?(2)如图,D、F是线段BC上的两点,AB=CE,AF=DE,要使△ABF≌△ECD,还需要条件.BCBC△DCBBF=DC或BD=FCABCD练习2解:△ABC≌△DCB理由如下:AB=DCAC=DB=△ABC≌()SSS(1)如图,AB=CD,AC=BD,△ABC和△DCB是否全等?试说明理由。AEBDFC问题:如图有一池塘。要测池塘两端A、B的距离,可无法直接达到,因此这两点的距离无法直接量出。你能想出办法来吗?ABABCED在平地上取一个可直接到达A和B的点C,连结AC并延长至D使CD=CA延长BC并延长至E使CE=CB连结ED,那么量出DE的长,就是A、B的距离.为什么?1.画∠MA′N=∠A2.在射线AM,AN上分别取A′B′=AB,A′C′=AC.3.连接B′C′,得∆A′B′C′.已知△ABC是任意一个三角形,画△A'B'C'使∠A'=∠A,A'B'=AB,A'C'=AC.画法:边角边公理有两边和它们的夹角对应相等的两个三角形全等.可以简写成“边角边”或“SAS”S——边A——角1.在下列图中找出全等三角形ⅠⅥ30ºⅣⅣ5cmⅡⅤ30ºⅧⅦⅢ30ºⅢ练习一2.在下列推理中填写需要补充的条件,使结论成立:(1)如图,在△AOB和△DOC中AO=DO(已知)______=________()BO=CO(已知)∴△AOB≌△DOC()∠AOB∠DOC对顶角相等SASCABDO例1已知:如图:AC=AD,∠CAB=∠DAB.求证:△ACB≌△ADB.ABCD证明:△ACB≌△ADB这两个条件够吗?例1已知:如图,AC=AD,∠CAB=∠DAB.求证:△ACB≌△ADB.ABCD证明:△ACB≌△ADB.这两个条件够吗?还要什么条件呢?例1已知:如图,AC=AD,∠CAB=∠DAB.求证:△ACB≌△ADB.ABCD证明:△ACB≌△ADB.这两个条件够吗?还要什么条件呢?还要一条边例1已知:如图,AC=AD,∠CAB=∠DAB.求证:△ACB≌△ADB.ABCD证明:在△ACB和△ADB中AC=AD(已知)∠CAB=∠DAB(已知)AB=AB(公共边)∴△ACB≌△ADB(SAS)ABCED在平地上取一个可直接到达A和B的点C,连结AC并延长至D使CD=CA延长BC并延长至E使CE=CB连结ED,那么量出DE的长,就是A、B的距离.为什么?回到初始问题???证明三角形全等的步骤:1.写出在哪两个三角形中证明全等。(注意把表示对应顶点的字母写在对应的位置上).2.按边、角、边的顺序列出三个条件,用大括号合在一起.3.证明全等后要有推理的依据.练习:3.已知:如图,AB=ACAD=AE.求证:△ABE≌△ACD.证明:在△ABE和△ACD中,AB=AC(已知),AE=AD(已知),∠A=∠A(公共角),∴△ABE≌△ACD(SAS).BEACD思考题:有两边和其中一边的对角对应相等的两个三角形是否全等?动手画一画课堂小结1.边角边公理:有两边和它们的______对应相等的两个三角形全等(SAS)夹角2.边角边公理的应用中所用到的数学方法:证明线段(或角相等)证明线段(或角)所在的两个三角形全等.转化1.若AB=AC,则添加什么条件可得△ABD≌△ACD?△ABD≌△ACDAD=ADAB=ACABDC∠BAD=∠CADSAS拓展2.已知如图,点D在AB上,点E在AC上,BE与CD交于点O,△ABE≌△ACDSASAB=AC∠A=∠AAE=AD要证△ABE≌△ACD需添加什么条件?BEAACDO2.已知如图,点D在AB上,点E在AC上,BE与CD交于点O,SASOB=OC∠BOD=∠COEOD=OE要证△BOD≌△COE需添加什么条件?BEAACDO△BOD≌△COE3.如图,要证△ACB≌△ADB,至少选用哪些条件才可以?ABCD△ACB≌△ADBSAS证得△ACB≌△ADBAB=AB∠CAB=∠DABAC=AD3.如图,要证△ACB≌△ADB,至少选用哪些条件可ABCD△ACB≌△ADBSAS证得△ACB≌△ADBAB=AB∠CBA=∠DBABC=BD