,*,,(, 200062):,25mgL,25mgL50mgL2,.,,.,25mgL,10%~13%,13%,NO-3-N100%,6%,138%,2.2.50mgL,,.,NH+4,NH+4、-,CO2-3HCO-3,,.:;;;:X172;X703.1 :A :0250-3301(2007)08-1882-07:2006-10-24;:2006-12-13:(02JG05030):(1972~),,,,E-mail:52050802003@student.ecnu.edu.cn*,E-mail:mshuang@des.ecnu.edu.cnExperimentalStudyontheProcessesandMechanismofEnhancedDenitrificationbyAdditionZeoliteinWastewaterTreatmentDAIXing-chun,HUANGMin-sheng,XUYa-tong,XIEBing(DepartmentofEnvironmentalscience,EastChinaNormalUniversity,Shanghai200062,China)Abstract:Aimtoenhancenitrogenremovalfromwastewater,additionzeolitetoaerationtankwaspreformed.Theresultshowedthatadditionofzeolitecouldimprovethenitrificationdenitrificationefficienciesbycomparingtwophaseexperimentof25mgLwithblankand25mgLwith50mgL,andthepopulationofnitrifyingbacteriainactivatedsludgeincreasedobviously.When25mgLzeolitewasaddedintoaerationtank,NH+4-NandTNremovalincreased10%~13%and13%respectively,endogenousrespirationrateofnitrificationincreasedabout138%,andthepopulationofnitrificationbacteriaincreasedabout2.2folds.Butthenitrogenremovalandendogenousrespirationrateof50mgLenhancedindistinctcomparingwith25mgL.TheseresultsindicatedthatNH+4ion-exchangeandaccumulationtotheinterioroutersurfacesofzeolite,co-existenceofaerobicandanoxicmicro-environmentswereresponsiblefortheenhanceddenitrifyingfunction.Keywords:zeolite;ionexchange;nitrificationanddenitrification;endogenousrespirationofnitrification ,,,AlSi,,,(NH+4-N)[1~3].[4],,A2O;[5],95%,0.2mgL;[6],.[7~10],,NH+4,37mgg.,.,.,、、、,,.1 1.1 、28820078 ENVIRONMENTALSCIENCEVol.28,No.8Aug.,2007DOI:10.13227/j.hjkx.2007.08.030,2,(1).××=100cm×20cm×14cm.4.5Lh,5.5h,3000mgL,2.5h,12,15d.,23~29℃.,Cs+、NH+4K+,38.7μm,2.16gcm3,200m2g.1.2 1.1 Fig.1 Schematicdiagramofpilotplant1 mg·L-1Table1 Influentcharacteristicsmg·L-1pHCODBOD5NH+4-NTNNO-3-N6.2~8.4436~826220~32018~5240~710.2~0.6130~1707.463027035560.41501.3 (1) 2,,25mgL50mgL.(2) 2,,125mgL,225mgL50mgL.2、、,,.(3) 18,h1,8h,.,,2.1.4 COD:;NH+4-N:;NO-3-N:;TN:;:,[11];pH:pH.:,2,,,20℃、DO1mgL,MLSS,[12,13];,,,0.5mgL(ATU),[14~16],;.PCR:-NaCl+K,DNA[17],DNA100μLTE,10-1、10-210-33,3μL,0.5μmolL();5Taq;200μmolL4×dNTPs;10×PCR;5~2.0mmolLMgCl2,50μL,95℃10min,35(94℃30s,60.1℃30s,72℃30s),72℃5min[18].:(YSI5100,YSI);HACH(DRB200,HACH);(DR2010,HACH);PCR(PTC-220,M.J);(WD-2101,)(DMLB,Leica).2 2.1 ,2,32.5mgL,25mgL50mgL,,,4h,2.2,,25mgL50mgL18838: 2 Fig.2 ResultofzeoliteonNH+4-Nremoval32%46.5%,g10.4mg7.5mg.,,16h.2.2 3,,1~2d,;,,.25mgL10%~13%(25%35%~38%), 3 Fig.3 RemovaleffectofNH+4-N;50mgL25mgL3%,.2.3 4,NO-3-N1.4~1.6mgL,25mgL,NO-3-N,2.6~3.2mgL,100%;25mgL50mgL,50mgL25mgL5%,.,,,,,; 4 Fig.4 ConcentrationofNO-3-Nineffluence1884 28,,.2.4 ,,3,.,,,.5,25mgL13%;50mgL25mgL5%.[19],,,.5 Fig.5 RemovaleffectofTN2.5 6,,25mgL,6%,,,4;,50mgL25mgL1%.6 Fig.6 ProportionofNH+4-NtoTNineffluence2.6 7,25mgL,0.44mg(g·h),25mgL(4),4d1.05mg(g·h),138%;50mgL25mgL,,4d,1.15mg(g·h)1.09mg(g·h),15%.,,.2.7 1、2(25mgL)、(50mgL)1mL,DNA,2.18858:7 Fig.7 Endogenousrespirationrateofnitrificationinactivesludge2 DNATable2 DNAamplificationproductionandprimersofnitrifyingbacteria(5′-3′)、AF363288-1AAACACGCCCAAACTCCTAC267~287AF363288-2CACTAACGGCTGGCATTCATC753~733X82559-1AACGGGGAGGAAGGTGGGGATGAC1158~1181X82559-2GTGGTGTGACGGGCGGTGTG1404~1385X90820-1CACGGCCCAGACTCCTACG314~332X90820-2TTCGCCATCGGTGTTCCTC715~697 DNA100μLTE,10-1、10-210-33,3μL,0.5μmolL();5Taq;200μmolL4×dNTPs;10×PCR;5~2.0mmolLMgCl2,50μL,PCR,8.1~273,1~310-1;4~610-2;7~910-3;10~1225mgL10-1;13~1525mgL10-2;16~1825mgL10-3;19~2150mgL10-1;22~2450mgL10-2;25~2750mgL10-38 PCRFig.8 Fluorescencephotobyspecificamplificationofnitrifyingbacteria1886 28 ,(MPN)95%[20],3.3,25mgL、2.2,50mgL5.5,, 3 Table3 CalculationresultaboutthepopulationofnitrificationbacteriaPCR10-110-210-3100mLMPNmL1)31043101.4×10425mgL32093103.1×10450mgL330240108.0×1041)=A××1003,AMPN,100DNATE,3.3 ,,,:(1)NH+4,NH+4-N,NH+4-N-(),(),,[21~23].(2)1gNH+4-N7.14g(CaCO3)[24,25],150mgL,NH+4-N35mgL,.,CO2-3HCO-3,,,.(3)DNA,50mgL25mgL,,,.4 (1),,,.(2),25mgL,10%~13%,NO-3-N100%,13%,6%;138%,2.2.(3)50mgL25mgL,3%,NO-3-N5%;5%;1%;15%.,,.:[1]RoziM,Cerjan-StefanovicS,KurajicaS,etal.Ammonianitrogenremovalfromwaterbytreatmentwithclaysandzeolites[J].WaterResearch,2000,34(14):3675~3681.[2],.[J].,1996,12(4):378~382.[3],.[J].,2001,25(4):209~210.[4],,.[J].,2002,21(10):641~646.[5],,.[J].,2000,21(5):71~73.[6],,,.[J].,2003,24(5):97~101.[7]BookeyNA,CooneyEL,PriestleyAJ.AmmoniaremovalfromsewageusingnaturalAustralianzeolite[J].WaterScienceandTechnology,1997,34(9):17~24.[8]JorgensenTC,WeatherleyLR.Ammoniaremovalfromwastewaterbyionexchangeinthepresenceoforganiccontaminants[J].WaterResearch,2003,37:1723~1728.[9]ChungYC,SonDH.Nitrogenandorganicsremovalfromindustrialwastewaterusingnaturalzeolitemedia[J].WaterScienceandTechnology,2000,42(5):5~6.18878:[10]GreenM,MelsA,LahavO,etal.Biological-ionexchangeprocessforammoniumremovalfromsecondaryeffluent[J].WaterScienceandTechnology,1996,34(1-2):449~458.[11].[M].().:,2002.[12]EPA-821-R-01-014,Specificoxygenuptakerateinbiosolids.Method1683[S].[13],,,.[J].,2005,26(4)