生物工程学报ChinJBiotech2011,September25;27(9):1347−1354journals.im.ac.cnChineseJournalofBiotechnologyISSN1000-3061cjb@im.ac.cn©2011CJB,Allrightsreserved.Received:Janurary5,2011;Accepted:April27,2011Supportedby:NationalHighTechnologyResearchandDevelopmentProgramofChina(863Program)(No.2009AA06Z311),MajorScientificandTechnologicalSpecializedProjectofZhejiangProvince(No.2010C13001).Correspondingauthor:PingZheng.Tel/Fax:+86-571-88982819;E-mail:pzheng@zju.edu.cn国家高技术研究发展计划(863计划)(No.2009AA06Z311),浙江省重大科技专项(No.2010C13001)资助。环境生物技术季军远,郑平,张吉强,陆慧锋310058:采用模拟有机废水,研究了分段组合式厌氧反应器(Compartmentalizedanaerobicreactor,CAR)的预警性能。试验结果表明:高效厌氧反应器的运行稳定性低于常效厌氧反应器。在高效工况下,进水的化学需氧量(Chemicaloxygendemand,COD)浓度的小幅提升(平均相对标准偏差为8.08%)可引起出水COD浓度(平均相对标准偏差为32.95%)和出水挥发性脂肪酸(Volatilefattyacids,VFA)浓度(平均相对标准偏差为40.46%)的大幅增加。容积负荷饱和度和VFA饱和度与反应器工况密切相关,可用于厌氧反应过程的预警。常负荷工况下(容积负荷饱和度和VFA饱和度低于0.89与0.40),反应运行性能稳定;满负荷工况下(容积负荷饱和度和VFA饱和度趋近1),反应运行性能波动增大;超负荷工况下(容积负荷饱和度和VFA饱和度超过1),反应运行性能恶化。:厌氧反应器,分段组合反应器,高负荷,工况预警Performanceofearly-warningofcompartmentalizedanaerobicreactorJunyuanJi,PingZheng,JiqiangZhang,andHuifengLuDepartmentofEnvironmentalEngineering,ZhejiangUniversity,Hangzhou310058,ChinaAbstract:Early-warningofcompartmentalizedanaerobicreactor(CAR)wasinvestigatedinlab-scale.TheperformancestabilityofCARathighloadingratewasworsethanthatatcommonloadingrate.Athighloadingrate,thefluctuationofeffluentchemicaloxygendemand(COD)concentrationandvolatilefattyacids(VFA)concentrationwaslargerthanthatofinfluentCODconcentration.TheaveragerelativestandarddeviationofeffluentCODconcentrationandVFAconcentrationwas32.95%and40.46%respectively,whilethatofinfluentCODconcentrationwas8.08%.Thesaturationofvolumetricloadingrate(SVLR)andVFA(SVFA)couldbeusedtoalarmtheperformanceofanaerobicreactors.TheworkingperformancewasgoodwhentheCARwasoperatedatnormalorganicloadingrate(OLR),inwhichSVLRandSVFAwerebelow0.89and0.40respectively.ThefluctuationofperformancebecamelargerwhentheCARwasoperatedatOLRnearsaturation,inwhichSVLRandSVFAwerecloseto1.TheperformanceofCARwasdeterioratedwhentheSVLRandSVFAweremorethan1.DOI:10.13345/j.cjb.2011.09.0071348ISSN1000-3061CN11-1998/QChinJBiotechSeptember25,2011Vol.27No.9Journals.im.ac.cnKeywords:anaerobicreactor,compartmentalizedanaerobicreactor,highloadingrate,performanceearly-warning[1-5][6](OLR)OLR40kgCOD/(m3·d)[7-9]((VFA))VFApH(CompartmentalizedanaerobicreactorCAR)1材料与方法1.1模拟废水NH4ClNaHCO3ⅠⅡ(1)[10]ⅠⅡ1mL/LNaHCO3pH1.2接种污泥ICSS51.0g/LVSS40.3g/LVSS/SS0.721.3试验系统15cm120cm2L(30±1)℃1.4分析项目及方法COD[11]SSVSS[11]pH[12]BSD0.52结果与分析2.1厌氧反应器的运行性能2.1.1(HRT)7hCOD(2886±187)mg/LHRTCOD表1营养液的物质组成[10]Table1CompositionofnutrientsolutionCompoundConcentraion(mg/L)CompoundConcentraion(mg/L)Yeastextract1200MgSO4220Beefextract1200KH2PO47540Tryptone3600TraceelementsⅠaCaCl2220TraceelementsⅡba:traceelementsI(mg/L):EDTA5000,FeSO45000;b:traceelementsII(mg/L):EDTA15000,H3BO414,ZnSO4·7H2O430,MnCl2·4H2O990,CuSO4·5H2O250,NaMoO4·2H2O220,NiCl2199,NaSeO4·10H2O210.:1349Journals.im.ac.cn图1分段组合式厌氧反应器系统Fig.1SchematicdiagramofCAR.1:influenttank;2:peristalticpump;3:recirculationpump;4:anaerobicreactor;5:biogas;6:effluenttank;7:wetgasmeter;8,9,10:samplingports,Ⅰ,Ⅱ,respectively.Ⅲ2~4COD(2886±187)mg/L(11595±373)mg/L(9.90±0.58)gCOD/(L·d)(39.75±1.28)gCOD/(L·d)(9.52±0.58)gCOD/(L·d)(39.12±1.24)gCOD/(L·d)(4.87±0.18)L/(L·d)(19.02±0.62)L/(L·d)COD(111±26)mg/L(184±39)mg/LCOD(96.18±0.77)(98.41±0.32)COD[13-14]VFA(38.57±2.25)mg/L(70.89±8.51)mg/LVFA[15]pH7.51CODCODVFAVFAVFACODVFACAR2COD(24.57)VFA(图2常效运行过程中的容积负荷、容积去除率和容积产气率Fig.2Organicloadingrate,volumetricCODremovalrateandvolumetricgasproductionatcommonloadingrate.图3常效运行过程中的进出水COD浓度及COD去除率Fig.3InfluentandeffluentCODconcentrationandCODremovalefficiencyatcommonloadingrate.图4常效运行过程中的出水pH与挥发性脂肪酸浓度Fig.4EffluentpHandvolatilefattyacids(VFA)concentrationatcommonloadingrate.1350ISSN1000-3061CN11-1998/QChinJBiotechSeptember25,2011Vol.27No.9Journals.im.ac.cn表2基质浓度波动对常效厌氧反应器稳定性的影响Table2EffectofsubstrateconcentrationfluctuationonperformancestabilityatcommonloadingrateSeriesⅠⅡⅢInfluentCODconcentration(mg/L)4181.0±1255.87134.0±1875.410033.0±1548.4Difference3045.04360.03935.0Relativestandarddeviation(%)30.026.315.4EffluentCODconcentration(mg/L)87.0±24.4122.0±27.5159.0±36.7Difference64.090.0121.0Relativestandarddeviation(%)28.022.523.1EffluentVFAconcentration(mg/L)42.26±12.1255.24±15.6266.91±9.45Difference37.3542.6837.34Relativestandarddeviation(%)26.6828.2914.1223.03)COD(23.92)COD(1875.38mg/L)CODVFA(36.7015.62mg/L)CAR2.1.2OLR(OLR=40gCOD/(L·d))HRTCOD5~7COD(11595±373)mg/L(29300±200)mg/L(39.75±1.28)gCOD/(L·d)(100.46±0.69)gCOD/(L·d)(39.12±1.24)gCOD/(L·d)(84.35±1.58)gCOD/(L·d)(19.02±0.62)L/(L·d)(57.00±0.56)L/(L·d)COD(184±39)mg/L(4700±342)mg/LCOD(98.41±0.32)(83.96±1.22)VFA(70.89±8.51)mg/L(3323.71±330.24)mg/LpH(8.14±0.07)(7.65±0.05)COD(32367±252)mg/L(110.97±0.86)gCOD/(L·d)(82.19±2.16)gCOD/(L·d)(56.47±0.66)L/(L·d)COD图5高效运行过程中的容积负荷、容积去除率和容积产气率Fig.5Volumetricloadingrate,volumetricCODremovalrateandvolumetricgasproductionathighloadingrate.图6高效运行过程中的进出水COD浓度及COD去除率Fig.6InfluentandeffluentCODconcentrationa