458()Vol.45No.820148JournalofCentralSouthUniversity(ScienceandTechnology)Aug.2014/111211(1.1001242.100013)/(PAC/UF)UF2(MC-LR)PAC2a15d20dUFUV254(DOC)11.5%15.0%PAC/UFUV254DOC32.7%23.8%PACMC-LR18.5%43.0%PACMC-LRTU991.2A1672−7207(2014)08−2928−06Treatmentofmicro-pollutedalga-richwaterwithPACandultrafiltrationintegratedprocessLIUYongwang1,LIXing1,YANGYanling1,LIANGShuang2,LIULing1,RENJiawei1(1.CollegeofArchitectureandCivilEngineering,BeijingUniversityofTechnology,Beijing100124,China;2.BeijingDongchengMunicipalCommissionofUrbanPlanning,Beijing100013,China)Abstract:Anintegratedprocessofpowderedactivatedcarbon(PAC)andultrafiltration(UF)andtheindependentUFwereconductedtotreatamicro-pollutedalga-richwater.Effectsofthetwotreatmentsonpollutantandmicrocystin-LRremoval,aswellasfoulingcontrolofPAC,wereinvestigated.Theresultsindicatethatbothofthetwoprocessescanremovethechlorophyll-aeffectively.Thematuritiesofnitrosomonasgroupandnitrobacteriaareabout15dand20d,respectively.TheremovalefficienciesofDOCandUV254forthePAC/UFare32.7%and23.8%,andthoseoftheindependentUFprocessare11.5%and15.0%.Therefore,PACcaneffectivelyenhancetheorganicremovalandtheMC-LRremovalincreasesfrom18.5%to43.0%withthePACaddition,Moreover,PACcanmitigatethemembranefoulingofUFprocessofalga-richwater.TheintegratedprocessofbiologicalpowderedactivatedcarbonandUFtendstobeabotheconomicalandefficienttechnologyforthetreatmentofMC-LR.Keywords:poweredactivatedcarbon;ultrafiltration;MC-LR()[1][2]2013−07−252013−10−18(2012ZX07404-003)(1963−)010-67391726E-maillixing@bjut.edu.cn8/2929[3](powderedactivatedcarbonPAC)(dissolvedorganicsDOC)PAC[4−6][7]PAC20mg/L(MC-LR)PAC,,[8]PAC/UF3[8]MC-LR(PAC)(UF)PAC/UFMC-LR11.150:1107/L24hMC-LR1(PVDF)0.01μm1Table1Characteristicsofsourcewater/251/NTU0.40.05ρ(NH3-N)/(mg·L−1)1.200.15ρ(CODMn)/(mg·L−1)2.40.2UV254/cm−10.0170.003ρ(DOC)/(mg·L−1)2.1000.400/(107·L−1)3~5ρ(MC-LR)/(μg·L−1)4.11.111050.02m275μm642.49m2/gpH7.2810.4%39.6%473.8mg/g[1]14dMC-LRAlexis96%FisherMilliporeMilli-Q(BillericaMA)1.22UFUF4g/LPAC(UF)1UF(300mL)UF(TMP)PAC12:120L/(m2·h)45min123PAC/UF4UF5UF6789101Fig.1Schematicdiagramofmembranedevice1.3MC-LR(1)MC-LR400mLGF/C(WhatmanEngland)C18(500mg6mLAgilentUSA)(10mL10mL()45293010%)10mLMC-LR1mL0.45μm(2)MC-LR1260(AgilentUSA)MC-LR(Zorbax300StableBondSB-C182504.6mm5μmAgilentUSA)238nm0.05%100%40:601.0mL/min4040μL[9]1.4UV254DOCaNH3-NNO2−-NHACH2100NUV2600254nm(UV254)ρ(DOC)ElementVarioTOCUV254ρ(DOC)0.45µmaNH3-NNO2−-NPLC22.12NH3-N(a)NO2−-N(b)22(a)NH3-Nρ(NH3-N)10~15UFNH3-N1585%NH3-N0.1mg/L2(b)NO2−-N4NO2−-NNO2−-N2.7mg/L151mg/L20dNO2−-N0.5mg/L15d20d[8]6d(a)ρ(NH3-N)(b)ρ(NO2−-N)12UF3PAC/UF22NH3-NNO2−-NFig.2RemovalcharacteristicsofNH3-NandNO2−-Nduringoperationoftwoprocesses2.22.2.1a0.100NTU1.000NTU0.01μma2a334~5.5μg/L4.67μg/LUFa(0.330.29)μg/L93.02%(3~7μm)()8/2931aaa893.51PAC/UFa(0.330.15)μg/L95.67%UFPACa12UF3PAC/UF32aFig.3Removalcharacteristicsofchlorophyll-aduringoperationoftwoprocesses2.2.2DOCUV254()ρ(DOC)UV254224PAC/UF6d14dUV254DOCPAC10PACUFUV254DOC11.5%15.0%PAC/UFUV254DOC32.7%23.8%PACPACUF2.2.3MC-LRMC-LR3~152MC-LR2MC-LR66UFMC-LR11.5%11MC-LR35%MC-LR12UF3PAC/UF42UV254DOCFig.4RemovalcharacteristicsofUV254andDOCduringoperationoftwoprocesses62MC-LRFig.6RemovalcharacteristicsofMC-LRduringoperationoftwoprocesses()45293210001105MC-LR[10]PAC/UFMC-LR43.0%UF18.5%PAC/UFMC-LRCampinas[6,11]PAC/UFMC-LR57.1%5.0%UFPACPAC/UFMC-LR7~10MC-LRUFPAC11MC-LR1565.8%45minMC-LRMC-LRMC-LRMC-LR2.3PAC[12]277UFPAC/UF9d42.0kPa16.9kPaPACZhang[1]72Fig.7ComparisonoftransmembrancepressuredevelopmentduringoperationoftwoprocessesPAC/UFPAC/UFPAC[13−14]1027UFPAC/UF17.4kPa10.0kPaLin[15]3(1)15d20d(2)PAC/UFMC-LR43.0%UF18.5%PAC/UFMC-LRMC-LR(3)PAC[1]ZHANGYan,TIANJiayu,NANJun,etal.EffectofPACadditiononimmersedultrafiltrationforthetreatmentofalgal-richwater[J].JournalofHazardousMaterials,2011,186(2/3):1415−1424[2]XIAShengji,LIUYanan,LIXing,etal.DrinkingwaterproductionbyultrafiltrationofSonghuajiangRiver[J].JournalofEnvironmentalSciences,2007,19:536−539.[3],.[J].,2007,1(1):1−3.LIGuibai,YANGYanling.UltrafiltrationThe3rdgenerationkeywaterpurificationtechnologyforcity[J].WaterTechnology,2007,1(1):1−3.[4]CampinasM,RosaMJ.AssessingPACcontributiontotheNOMfoulingcontrolinPAC/UFsystems[J].WaterResearch,2010,44:1636−1644.[5]KimJ,CaiZ,BenjaminMM.NOMfoulingmechanismsinahybridadsorption/membranesystem[J].JournalofMembraneScience,2010,349(1/2):35−43.[6]CampinasM,RosaMJ.RemovalofmicrocystinsbyPAC/UF[J].8/2933SeparationandPurificationTechnology,2010,71(1):114−120.[7],,,.-[J].,2010,36(7):92−95.XIELiangjun,LIWeiying,CHENJie,etal.StudyonremovalcharacteristicofPAC-UFintergratedprocessofMCs[J].TechnologyofWaterTreatment,2010,36(7):92−99.[8],,,.[J].,2009,35(12):1680−1684.TIANJiayu,YANGYanling,NANJun,etal.Start-upcharacteristicsofmembranebioreactor(MBR)fordrinkingwatertreatment[J].JournalofBeijingUniversityofTechnology,2009,35(12):1680−1684.[9]SangolkarLN,MaskeSS,ChakrabartiT.Methodsfordeterminingmicrocystins(PeptideHepatotoxins)andmicrocystin-producingcyanobacteria[J].WaterResearch,2006,40(19):3485−3496.[10]LeeJ,WalkerHW.Me