WaterPollutionandTreatment,2020,8(1),24-30PublishedOnlineJanuary2020inHans.://doi.org/10.12677/wpt.2020.81004:,,,,,.[J].,2020,8(1):24-30.DOI:10.12677/wpt.2020.81004TheRoleandMechanismofHumicAcidinInhibitingtheAnaerobicProductionofSulfatebySulfateReducingBacteriaBinbinMa1,MinWu1*,ZhiyuanWang2,GongxiaLi2,LiuzhuZhao2,ShiyangChen31StateKeyLaboratoryofPollutionControlandResourceReuse,TongjiUniversity,Shanghai2ShanghaiMunicipalEngineeringDesignandResearchInstitute(Group)Co.,Ltd.,Shanghai3TongjiArchitecturalDesign(Group)Co.,Ltd.,ShanghaiReceived:Dec.1st,2019;accepted:Dec.19th,2019;published:Dec.26th,2019AbstractTheHAwasaddedtosludgecontainingalargeamountofSRBandreactedunderanaerobiccondi-tions.TheresultsshowedthatHAstronglyinhibitedtheproductionofH2SandsulfidesbySRB.Theeffectisthat80to200mg/LofHAhasaninhibitoryeffectonH2Sproductionofmorethan80%andaninhibitoryeffectonsulfideproductionofmorethan50%.HAcanpromotetheuseofSRBforelectrondonors.ThetotalutilizationofSRBfor200mg/LHAforelectrondonorsis97.88%,whichis20.62%higherthanthatforSRBwithoutHA.TheadditionofAQDSshakeflaskexperi-mentsindirectlyverifiedthatdosingHAdisruptedtheSRB-reduced24-SOelectrontransportsys-temandbecametheultimateelectronacceptorforSRBmetabolism.HAhasasignificantinhibito-ryeffectontwokeyenzymesinthemetabolismofSRB:APSreductaseandsulfitereductase,withinhibitoryeffectsof44.59%and42.53%,respectively.KeywordsHumicAcid,Sulfate-ReducingBacteria,HydrogenSulfide,ElectronTransportSystem,Microorganism,EnzymeActivity11*22231*DOI:10.12677/wpt.2020.81004252()3()20191212019121920191226SRBHAHASRBH2S80~200mg/LHAH2S80%50%HASRB200mg/LHASRB97.88%HASRB20.62%AQDSHASRB24-SOSRBHASRBAPS23-SO44.59%42.53%Copyright?2020byauthor(s)andHansPublishersInc.ThisworkislicensedundertheCreativeCommonsAttributionInternationalLicense(CCBY).(H2S)H2SH2S[1][1]H2S(SRB)[3][4](HA)SRBH2SHASRBH2SSRBH2SH2S2.2.1.2.1.1.OpenAccessDOI:10.12677/wpt.2020.810042642h1L0.192g0.15g(1)1LCODpH(24SO-)3000mg/L7600mg/L5min(ORP)-300mV150rpm3524h20min1LH2S800ppmSRBTable1.Componentsandcontentsofculturemedium1.(mg/L)(mg/L)K2HPO4?3H2O750NaH2PO4?H2O400NH4H2PO4250Na2SO488.75CaCl2?2H2O0.1MnCl2?4H2O0.015ZnSO4?7H2O0.1H3BO30.09CoCl2?6H2O0.06CuCl2?2H2O0.006NiCl2?6H2O0.009Na2MoO4?2H2O0.009NaSeO3?5H2O0.009Na2WO4?2H2O0.0152.1.2.2(HA)HA(FA)90%C9H9NO6227.17CAS1415-93-6Table2.Componentsandcontentsofexperimentalwater2.(mg/L)(mg/L)CaCl2?2H2O11NaH2PO4?H2O76NH4Cl59KCl36Na2SO488.75MnCl2?4H2O0.015ZnSO4?7H2O0.03H3BO30.09CoCl2?6H2O0.06CuCl2?2H2O0.006NiCl2?6H2O0.009Na2MoO4?2H2O0.009NaSeO3?5H2O0.009Na2WO4?2H2O0.0152.2.500mLMLSS5000mg/L04080120160200mg/L400mLCOD150mg/LN2ORP-150mV150rpm35HA1224364860hH2S0.45(TOC)DOI:10.12677/wpt.2020.81004272.3.H2SADSK-4DR2800TOCTOC(APS)Ostrowski[5][6]3.3.1.HASRB4SO2-SRB24SO-H2S12HAH2SHASRB24SO-40mg/LHAHA60hH2S80%200mg/LHA93.14%40mg/LHA44.67%HA50%Figure1.H2SgasconcentrationinthereactorunderdifferentconcentrationsofHA1.HAH2S3.2.HASRBBradley[7]HA3HAHAHASRBHASRB200mg/LHASRB60h97.88%HASRB20.62%SRB24SO-H2SSRBSRBHAHA-2,6-(anthraquione-2,6-disulfonnat,AQDS)SRBAQDSAH2QDSSRBAQDSHASRBSRB24SO-2S-H2SDOI:10.12677/wpt.2020.8100428Figure2.TotalsulfideconcentrationinthereactorunderdifferentconcentrationsofHA2.HAFigure3.UtilizationofelectrondonorswhenHAwasaddedatdifferentconcentrations3.HA3.3.HASRBSRB24SO-(APS)(23SO-)APS23SO-SRB[8][9]SRB45HAAPS23SO-HAAPS23SO-HAAPS23SO-12hHASRBSRBHA24SO-DOI:10.12677/wpt.2020.8100429HASRBH2SFigure4.EffectofHAatdifferentconcentrationsonAPSreductaseenzymeactivityofSRB4.HASRBAPSFigure5.EffectofHAatdifferentconcentrationson23SO-reductaseenzymeactivityofSRB5.HASRB23SO-4.1)HASRB24SO-80~200mg/LHAH2S80%40mg/LHA44.67%HA50%2)HASRBHA200mg/LHASRB97.88%HASRB20.62%HASRB24SO-DOI:10.12677/wpt.2020.8100430SRB3)HASRB23SO-APSHA[1],.[J].,1996(12):17-18.[2],,.[J].,2004,22(5):282-4.[3]Cooling,F.I.,Maloney,C.L.,Nagel,E.,etal.(1996)InhibitionofSulfateRespirationby1,8-DihydroxyanthraquinoneandOtherAnthraquinoneDerivatives.Applied&EnvironmentalMicrobiology,62,2999.[4]Wang,X.,Cheng,X.,Ren,Y.,etal.(2016)HumicAnalogAQDSCanActasaSelectiveInhibitortoEnableAnox-ygenicPhotosyntheticBacteriatoOutcompeteSulfate-ReducingBacteriaunderMicroaerobicConditions.JournalofChemicalTechnology&Biotechnology,91,2103-2110.[5].[D]:[].:,2015.[6]Kim,B.G.,Divakaran,S.,Brown,C.L.andOstrowski,A.C.(2001)ComparativedigestiveEnzymeOntogenyinTwoMarineLarvalFishes:PacificThreadfin(Polydactylussexfilis)andBluefinTrevally(Caranxmelampygus).FishPhy-siology&Biochemistry,24,225-241.[7]Bradley,P.M.,Chapelle,F.H.andLovley,D.R.(1998)HumicAcidsasElectronAcceptorsforAnaerobicMicrobialOxidationofVinylChlorideandDichloroethene.AppliedandEnvironmentalMicrobiology,64,3102-3105.[8].[D]:[].:,2006.[9],,.[J].,2012,40(11):6368-6370.