:,,1985,,。#。*(No.2008ZX07314-001)。高温厌氧膨胀颗粒污泥床反应器处理聚氯乙烯离心母液废水启动方法*黄福奎1,2 郭晓燕1# 陈昌振1 雷显峰1 马世虎2 胡万里1 唐运平3(1.,,,300071;2.,300160;3.,300191) (EGSB)、(PVC),(SBR)PVC,,PVC,。,(COD)0.2kg/(m3·d)50h,CODpH80%8.0。,,。、EGSBPVC,。 PVC EGSB Start-upofexpandedgranularsludgebedreactorfortreatingmotherliquidofpolyvinylchlorideunderthermophiliccon-dition HUANGFukui1,2,GUOXiaoyan1,CHENChangzhen1,LEIXianfeng1,MAShihu2,HUWanli1,TANGYunping3.(1.CollegeofEnvironmentalScienceandEngineering,TianjinKeyLaboratoryofEnvironmentalReme-diationandPollutionControl,KeyLaboratoryofPollutionProcessesandEnvironmentalCriteria,MinistryofEdu-cation,NankaiUniversity,Tianjin300071;2.KeyLaboratoryofHollowFiberMembraneMaterialandMembraneProcessofMinistryofEducation,TianjinPolytechnicUniversity,Tianjin300160;3.TianjinAcademyofEnviron-mentalSciences,Tianjin300191)Abstract: Thelowconcentratedrefractorymotherliquidofpolyvinylchloridewastreatedbyusingexpandedgranularsludgebedreactor(EGSB)underthermophilicanaerobicconditionwithinoculatingthemixtureofaerobicac-tivatedsludgefromsequencingbatchreactorprocessforthemunicipalwastewatertreatmentplantandthesludgefromthebiologicalcontactoxidationprocessfortreatingthemotherliquidofpolyvinylchloride,andthesystemwassuc-cessfullystartedupbygraduallychangingtheproportionofglucosesimulatedwastewaterandthemotherliquidofpolyvinylchloride.Theorganicloadingrateandhydraulicretentiontimewerecontrolledat0.2kg/(m3·d)(meas-uredinCODconcentration)and50hduringthestart-upprocess,theCODremovalratecouldachievedto80%andthepHofeffluentremainedat8.0.Theresultsshowedthatthesynergiesofco-metabolicsubstratecouldalleviatethetoxicityofrefractorysubstanceonmicro-organismsandimprovethebiodegradabilityofwastewatersignificantly.Starting-upmethodofchangingthewastewaterqualityandkeepingthestableorganicloadingpresentedperfectstabil-ityandreliabilityinEGSBreactortreatingmotherliquidofpolyvinylchloride.Keywords: thermophilicanaerobictreatment;motherliquidofpolyvinylchloride;expandedgranularsludgebed(EGSB)reactor;start-up;biodegradability (PVC),(60~70℃),、,。[1]、[2,3]、,,、。、。(EGSB)、、,·29· DOI:10.15985/j.cnki.1001-3865.2010.10.004[4-7]。[8,9]。EGSBPVC,COD、、(VFA)、pH,PVC。1 1.1 试验废水和接种污泥,PVC,,。,,SS47mg/L,60~80NTU,COD320~380mg/L,BOD5/COD0.08,。(SBR)PVC,15%()。SS47.68g/L,VSS24.16g/L,EGSB80%。1.2 试验装置 1。EGSB,()、()、;159mm,90mm,1559mm,275mm,13.4L。10,,(55±2)℃,1 EGSBFig.1 TheschematicdiagramofEGSBreactor1—;2—;3—EGSB;4—;5—;6—;7—;8—,,。1.3 分析方法COD:;BOD:OXITOPISBOD;VFA:;SS、VSS:;pH:PHS-25pH。1.4 试验方法:、。,,,3℃/d,40℃50℃,3℃/d55℃,(55±2)℃。COD∶N∶P=200∶5∶1、、,Fe、Co、Ni、Ca。,PVC,PVC。2 2.1 废水可生化性评价[10]。,BOD5/COD,BOD5/COD。BOD5,,、BOD5。,,,[11]。,COD。,,PVCCODCOD20%(,)、33%、50%、75%、85%100%,2。 ,50h,(COD)0.2kg/(m3·d),COD80%。LGPVC·30· 32 10 2010102 CODFig.2 OrganicloadingrateandCODremovalofeffluentduringstart-upprocess1—1~11;2—12~24;3—25~2920%PVC80%;4—30~3333%PVC67%;5—34~4550%PVC50%;6—46~6775%PVC25%;7—68~7985%PVC15%;8—80~93PVCEGSB[12],,,。PVC,,,,。,PVC、,,,。,,,。2.2 出水pH和碱度特征pH,pH6.5~7.8。,“”,。/COD1.00∶1.00(,)pH0.05∶1.00,pH8.0。3,,NaHCO3Na2CO3。,,VFAH2CO32。VFA,H2CO3[13]。Na2CO3、NaOH、Ca(OH)2CO2,NaHCO3pH[14]。,Na2CO3NaHCO3,,NaHCO3,400mg/L(CaCO3)。3 pHFig.3 AlkalinityandpHofeffluentduringstart-upprocess ,,1000~5000mg/L[15],500mg/L,。,;、、,,;,COD,COD。。PFEFFER[16],40℃,pH7.0,2250mg/L;60℃,1300mg/L。,。2.3 出水VFA特征VFA、H2CO2,CH4、CO2。,VFA,VFA。,VFA,,,·31· [17]。,VFA。 4,VFA,,VFA,100mg/L()。,,VFA,,,VFACO2CH4。4 VFApHFig.4 VFAandpHofeffluentduringstart-upprocess ,VFApH“”。VFA,,pH;pH,。,pH“”VFA(4)。VFA,,PVC。2.4 产气量和反应器污泥特性的变化特征5,,,;PVC,。PVC5 Fig.5 Methanegasproductionduringstart-upprocess,;,。 6(3)VSS/SS。,(VSS/SS),,(VSS/SS),。,VSS/SS,,PVCCOD。6 Fig.6 SludgecharacteristicsindifferentlocationofEGSBreactor3 (1)EGSB、PVC,,PVC。,0.2kg/(m3·d)50h,COD80%,pH8.0,、。(2)500mg/L,,、()。:[1] ,.[J].,2001,29(3):211-214.[2] ,,.AOPs[J].,2000,8(5):1-4.[3] ,.O3[J].,2001,24(1):8-11.(下转第36页)·32· 32 10 2010105 pH(25℃)Fig.5 TheeffectofpHontheadsorptionofphenolonCO2-treatedactivatedcarbon3 (1)CO2,,。,、。(2)Freundlich。(3)。pH2~8,;pH9,。(致谢:感谢南京大学大型贵重仪器设备开放测试基金资助。):[1] ,.[J].,2009,3(2):289-292.[2] ,,,.[M].:,1983:16-19.[3] ,,.[J].,2009,35(1):67-70.[4] BEKERU,GANBOLDB,DERTLIH,etal.Adsorptionofphenolbyactivatedcarbon:influenceofactivationmethodsandsolutionpH[J].EnergyConversionandManagement,2010,51(2):235-240.[5] ,,.[J].,2001,21(3):20-22.[6] BANATFA,ALBASHIRB,ALASHEHS,etal.Adsorptionofphenolbybentonite[J].EnvironmentalPollution,2000,107(3):391-398.[7] JUANGRS,WUFC,TSENGRL.Adsorptionisothermsofphenoliccompoundsfromaqueoussolutionsontoactivatedcar-bonfibers[J].JournalofChemicalandEngineeringData,1996,41(3):487-492.[8] AHMADIF,NIKNAMAK,JAFARPOURJ,etal.Modifyac-tivatedcarbonbyN,N'-diacetyl-4-bromo-2,6-di(aminomethyl)phenolasatoolforthesolidphaseextractioninheavymetalsanalysis[J].ArabianJournalforScienceandEngineering,2009,34(2):21-29.[9] LIOURM,CHENSH.CuOimpregnatedactivatedcarbonforcatalyticwetperoxideoxidationofphenol[J].JournalofHaz-ardousMaterials,2009,172(1):498-506.[10] ALTENORS,CARENEB,EMMANUELE,etal.Adsorp-tionstudiesofmethyleneblueandphenolontovetiverrootsact