(1)1根式11aa(式中0a)的分数指数幂形式为()A43aB43aC34aD34a2若12a,则化简24(21)a的结果是()A21aB21aC12aD12a4设123()4a,144()3b,343()2c则,,abc的大小顺序是()A.cabB.cbaC.bacD.bca7为了得到函数13()3xy的图象,可以把函数1()3xy的图象()A向左平移3个单位长度B向右平移3个单位长度C向左平移1个单位长度D向右平移1个单位长度8使不等式31220x成立的x的取值范围是()A2,3B3,2C1,3D1,39已知函数121,02,0()xxxxfx,则1(())9ff=()A4B14C4D1410函数91()3xxfx的图象()A关于原点对称,B关于直线yx对称C关于x轴对称D关于y轴对称(2)(1)63231.512;(2)433331733246339.(1)111224132710()10()()30025162321若函数()yfx满足以下条件:(12分)①对于任意的,xRyR,恒有()()()fxyfxfy;②0,x时,()1,fx.(1)求(0)f的值;(2)求证()()(()0)()fxfxyfyfy.(3)7、10log5log)5(lg)2(lg2233·.10log188、(1)lg25+lg2·lg50;(2)(log43+log83)(log32+log92)23、log2(x2-5x-2)=224、log16x+log4x+log2x=725、log2[1+log3(1+4log3x)]=128、lg(y-1)-lgy=lg(2y-2)-lg(y+2)29、lg(x2+1)-2lg(x+3)+lg2=030、lg2x+3lgx-4=01.化简:(1)222lg5lg8lg5lg20(lg2)3;(2)24525log5+log0.2log2+log0.5.2.若lglg2lg2lglgxyxyxy,求xy的值(1))347(log)32((2))3232(log6(3)12log4log)7.0()827(2331lg312(1)已知,8123yx则yx11(2)已知,19672yx则yx11(1)ccbaaalog1loglog=(2)abacccalogloglog=(3)23)2(lg8000lg5lg=(4)42938432log)2log2)(log3log3(log=(5)12527lg81lg6log2=(6)15log45log)3(log515215=2)2(lg50lg2lg25lg=(8)xxxxxxxlglg21lg)lg(lglg)lg(lg)lg(lg)(lg2222=(4)(1)ccbaaalog1loglog(2)abacccalogloglog(3)23)2(lg8000lg5lg(4)42938432log)2log2)(log3log3(log(5)12527lg81lg6log2(6)15log45log)3(log515215(7)2)2(lg50lg2lg25lg(8)xxxxxxxlglg21lg)lg(lglg)lg(lg)lg(lg)(lg2222(9)nnn32log)3log27log9log3(log928425.已知5lg2lg35lg2lg33ba,求333baab2)21log31324lglg8lg245224936.已知)1(logloglog2xxxxcab,求证:bacbclog27.已知)2lg(lglg)2lg(33yxyxyx,求值yxyx32(1)222lg5lg8lg5lg20(lg2)3;(2)24525log5+log0.2log2+log0.5.2.若lglg2lg2lglgxyxyxy,求xy的值.(5)(6)(7)(8)