浙江大学学报() 30(3):241~246,2004JournalofZhejiangUniversity(Agric.&LifeSci.) :2003-08-04:(30070017);.:(1975—),,,,.:,,,..Tel:0571-86971709;E-mail:pzheng@zju.edu.cn.:1008-9209(2004)03-0241-06卢刚,郑平,夏凤毅(,310029) :含氨废水的短程硝化能够实现节能降耗,是目前废水生物脱氮领域的研究热点.本文分析了短程硝化的原理及基于短程硝化的新型生物脱氮工艺的优势,探讨了温度、pH、溶解氧、游离氨、污泥龄等控制条件对实现短程硝化的影响以及适宜的参数范围,并介绍了短程硝化的工艺途径. :含氨废水;生物脱氮;短程硝化;控制条件;SHARON工艺;OLAND工艺:TQ92 :ALUGang,ZHENGPing,XIAFeng-yi(Dept.ofEnvironmentalEngineering,ZhejiangUniv.,Hangzhou310029,China)Partialnitrificationofammonia-containingwastewater.JournalofZhejiangUniversity(Agric.&LifeSci.),2004,30(3):241-246Abstract:Partialnitrificationofammonia-containingwastewatercansaveenergyandreducecost,andhasbecomeoneofthehotspotsintheresearchofbiologicalnitrogenremovalfromwastewater.Theprincipleofpartialnitrificationandthemeritsofanewprocessbasedonthatprinciplewereanalyzed,effectsofthecontrollingconditionssuchastemperature,pH,dissolvedoxygen,freeammoniaandsludgeagewerediscussed,andsomenewprocessesforpartialnitrificationwerepresented.Keywords:ammonia-containingwastewater;biologicalnitrogenremoval;partialnitrification;controllingcondition;SHARONprocess;OLANDprocess ,.,.,、[1],.,,-、-[2,3].,,.1 短程硝化原理 [4,5],:,(Nitrosomonas)(NO2-);,(Nitrobacter)(NO3-),: NH4++32O2NO2-+H2O+2H+(1) NO2-+12O2NO3-(2) ,,.,,.,.,,,,,. ,-,,. -,.,: NH4++2O2NO3-+H2O+2H+ NO3-+56CH3OH12N2+56CO2+76H2O+OH-(3) -、-,: -: NH4++32O2NO2-+H2O+2H+ NO2-+12CH3OH12N2+12CO2+12H2O+OH-(4) -: NH4++32O2NO2-+H2O+2H+ NO2-+NH4+N2+2H2O(5) ,:①--25%,--62.5%,;②--40%,-,;③-,;④,、VSS0.765g/gN、0.345g/gN0.112g/gN[6,7],.2 短程硝化的控制条件 ,.:、pH、、.2.1 ,,.,,,. (5~40℃),[8]: _mt=_m20exp(-Eact(20-t)293R(273+t)6)(6),_mtt(℃)(d-1),_m20(20℃)(d-1),Eact(kJ/mol),R(8.314J/molK).θ=Eact/[293R(273+t)],(6): _mt=_m20exp[θ(t-20)](7)242 浙江大学学报() 30 ,θ. 68kJ/molNH4+44kJ/molNO2-[4],θ0.0940.061.(20℃),0.801/d0.788/d[9,10].(7),1.1 Fig.1 Relationshipbetweengrowthrateofnitrobacteriaandtemperature 1,.20℃,,20℃,.,,,.Hellinga,(5~20℃),,,(20~35℃)[11].,,,[12],40℃.,30~35℃.2.2 pH pH2,pH,pH[13]. pH,pH7.0~8.5,6.0~7.5[4].HellingapH,2[11].2 pHFig.2 EffectofpHongrowthrateofnitrobaceria ,.,,.,pH,,,. ,(NH3)(HNO2).,: NH3+H2ONH4++OH-(8) HNO2NO2-+H+(9) pH,(8),,.,pH,(9),,.,pH,,. ,pH[13,14].,pH243 3 ,: .,pH7.6~8.1.2.3 (DO) ,.,.,. ,,Laanbroek,0.2~0.4mg/L,1.2~1.5mg/L[15].Hunik(Nitrosomonas)(Nitrobacter),0.16mg/L0.54mg/L[16].,,,,,,. ,Hanaki,0.5mg/L,60%,30%[17].BernetDO,DO1.0mg/L,[18].,0.5~lmg/L,250mg/L,90%,120d[19]. ,.,,1~1.2mg/L.2.4 (FA) (8),2:(NH3)(NH4+).,,,.,. Anthonisen,0.1~1.0mg/L,10~150mg/L[20].Christian0.6mg/L,;5mg/L,40mg/L[21].Abeling,5mg/L,;≥7mg/L,[22].,,,.,5~10mg/L. ,,[4]: CNH3=1.214CTAN10pHexp[6344/(273+t)]+10pH(10),CNH3,CTAN,t.:、pH.,,.,(9),3. ,,:pH、、,pH.,pH. ,:,[23,24].,.,,.244 浙江大学学报() 30 3 Fig.3 Sensitivityanalysisoftheparameters2.5 ,.,.pH,,,,,,. ,.3 短程硝化工艺3.1 SHARON SHARON(SinglereactorforHighactivityAmmoniaRemovalOverNitrite)Delft[11,25].,(30~40℃),.,,,. SHARON:①,;②HRT,HRT;③,pH,. SHARON,.3.2 OLAND OLAND(OxygenLimitedAutotrophicNitrificationDenitrification)Gent[26].,,,. OLAND,:①,,,,,;②,,. OLAND,..4 结 论 ,,.,,.:、pH、、,:30~35℃、pH7.6~8.1、1~1.2mg/L、5~10mg/L,.,,,.245 3 ,: References:[1] VerstraeteW,PhilipsS.Nitrification-denitrificationprocessesandtechnologiesinnewcontexts[J].EnvironmentalPollution,1998,102(31):717-726.[2] ZHENGPing,FENGXiao-shan(,).JettenMSM,etal.StudyonperformanceofANAMMOXfluidizedbedreactor[J].ActaScientiaeCircumstantiae(),1998,18(4):367-372.(inChinese)[3] VanKempenR,MulderJW,UijterlindeCA,etal.Overview:fullscaleexperienceoftheSHARONprocessfortreatmentofrejectionwaterofdigestedsludgedewatering[J].WaterScienceandTechnology,2001,44(1):145-152.[4] DanielSHagopian,JohnGRiley.Acloserlookatthebacteriologyofnitrification[J].Aquaculturalengineering,1998,18:223-244.[5] ZHENGPing,FENGXiao-shan(,).Biochemicalmechanicsofnitrification[J].Microbiology(),1999,26(3):215-220.(inChinese)[6] JacobCarstensen,PoulHarremoes,HenrikMadsen.Statisticalidentificationofmonod-kineticparametersfromon-linemeasurements[J].WaterScienceandTechnology,1995,31(2):125-133.[7] ZHENGPing,HUBao-lan(,).Kineticsofanaerobicammoniaoxidation[J].ChineseJournalofBiotechnology(),2001,17(2):193-198.(inChinese)[8] XiaodiHao,JosephJ,MarkCM,etal.Model-basedevaluationoftemperatureandinflowvariationsonapartialnitrificationANAMMOXbiofilmprocess[J].WaterResearch,2002,36:4839-4849.[9] MaurerM,GujerW.Dynamicmodelingofenhancedbiologicalphosphorusandnitrogenremovalinactivatedsludgesystem[J].WaterScienceandTechnology,1998,38(1):203-210.[10] WiesmannU.Biologicalnitrogenremovalfromwastewater[J].AdvancesinBiochemicalEngineeringBiotechnology,1994,51:113-154.[11] HellingaC,SchellenA,MulderJW,etal.TheSharonprocess:aninnovativemethodfornitrogenremovalfromammoniumrichwastewater[J].WaterScienceandTechnology,1998,37(9):135-142.[12] StrousM,KunenJG,JettenMSM.Keyphysiologyofanaerobicammoniumoxidation[J].ApplEnvironMicrobiol,1999,65:3248-3250.[13] AntoniouP,HamiltonJ,KoopmanB,etal.EffectoftemperatureandpHontheeffectivemaximumspecificgrowthrat