AGSSVI80%。AGS、、[1-2]。、、[3-4]。AGS、、AGS。AGS、CFRAGS。12003DEKREUKEdeAGS。2SBR6.00m、0.60mASCOD270~400mg/L。180%AGS0.21mm[5]。AGS。AGS。ISANTAAGS11。2.00m、25.00cm100L。5AGSSVI30(13±6)mL/(g)(114±5)g/L2.4mm。75%。NH4+-N90%241NO3--NTP90%70%60%55%AOBNOBGAO[6]。LIUAGS40%60%。1~2AGS4005%~30%AGSSVI530mL/g。DGGE12331.2150002.2253003.200000AGS、、AGSAGS。AGS、、、、。、、AGS。X703.1A1000-3770(2018)11-0011-0082018-01-181990-021-60702239wangmyhhu13@gmail.com4411201811Vol.44No.11Nov.,2018DOI:10.16796/j.cnki.1000-3770.2018.11.00311COD、NH4+-NNOx--N80%、98%50%[7]。SBRAGS、、。MORALESAGS307dCOD、TNCOD/ρ(TN)1.40~6.30kg/(m3·d)、0.5~2.5kg/(m3·d)1.90~9.40g/g。9AGS2.0~2.8mmSVI1060mL/gVSS5~12g/LCOD61%~73%NH4+-N56%~77%NH4+-NNO2--N[8]。AGS。2009NI1m3SBRCODCOD95~200mg/L3~4h。300dMLSS9.5g/LAGS85%0.2~0.8mmCOD90%NH4+-N95%。SNDAGS[9]。AGSCOD2。YANG30%70%SBRAGSCOD0.5~1.0g/L331.4m30.28mmMLSS7.50g/L[10]。SU、AGS。880μm700μm12.3~20.0g/L、COD21~56g/kgAS。45d750μmSVI3020~35mL/gCOD、TN、TP92%、81%85%[11]。2Nereda誖2005AGS250m3/d。AGS。2006AGS250m3/dCOD95%。2009Nereda?500m3/d2COD1~8g/LCOD95%10~20g/LSVI520~30mL/g。Nereda誖AS3。Nereda誖。2008GansbaaiAGS。4000m3/d37m、18mCODNkj、NH4+-N、TP、SS1.265g/L115、75、19、450mg/LCOD、NH4+-N、TN、TPSS97%、98%、89%、82%99%。AGSNereda誖。、、2011WaterBoardVeluweAGSEpe。20125AGS590001500m3/hTN、TP5、0.30mg/L。2015PRONKGarmerwoldeAGS、、。5AGS8g/LSVI545mL/g1.0mm60%TN、TP7、1mg/L0.17、0.24kg/(m3·d)。13.90k·Wh/a58%~63%[12]。2017、AGS30AGS44111225%~75%20%~50%[13]。AGS。SBRAGSSBR455m、38m、6m12.54×103m350×103m3/d2010。30%70%、、、COD200~600mg/LBOD550~105mg/LNH4+-N、TP28~40、2~40mg/LB/C0.23。、、、SBR。SBR40min240min50min30min50%~70%。337dASAGSSVI3047.10mg/L0.50mm42mL/hCOD、NH4+-N、TN85.00%、95.80%59.60%A/OOD。TPTP[10]。3AGS、HRT、、、、AGS[14-15]。20SBR、、、、EPSAGSAGS[16]。SBR、CFR、。CFRAGSAGS。JUANGAGSCFR210COD83.1%±6.3%MLVSS(6.5±3.4)g/L1.9mm56%Bacteroidetes30%Proteobacteria14%ActinobacteriaAGSCFR[17]。LIMODAGS13120AGS0.6mmSVI44mg/L。SBRAGSMODMODFlavobacteriumEPS2BOD5NH4+-N90%[18]。CFRAGSAGSCFRCFRAGS。CFRAGS。3.1Continuous-flowReactorwithTwo-zoneSedimentationtankCFR-TST1。II。AGSII。AGS。AGSAGS[19]。ZOUAGSCOD(125±36)mg/LBOD5/COD0.25~0.40HRT18h611041051CFR-TSTFig.1StructureofCFR-TSTreactor13μm55μmAGSCOD65mg/LNH4+-N(1.4±0.9)mg/L[20]。3.2MBR[21]。MBRAGSAGSCFR。AGSAGSCFR[17]MBRSBRAGSMBR[22]。CORSINOAGSMBRAGSAGS[23]。CHENMBRAGSMBRAGS、、[24]。MBR。2。COD:ρ(N):ρ(P)=1:5:1F/MHRT5hSRT110d。3776AGS(0.228±0.014)mm1.125mm。AGSCODNH4+-NNOx--NTN80%。ProteobacteraBacteroidetesThiothrixeikelboomii[25]FlavobacteriumSaprospiraceaeTN[26]。3.3。SBR。AGSCODTNTP40.7%~45.4%44.00%[27]。LITiO2EPSTNCODTP[28]。LIUAGSSBR[29]。CFR。AHMAD[30]CFRCFR3。SBRAGS1:1CFR。2DOC95%。NH4+-NNO2--NCRF2MBRFig.2Structureofinternal-recycleMBRreactorCFRCFR3CFRFig.3Algal-bacterialgranulesludgeinCFRReactor441114NO2--NNO3--NTN29%~94.00%76%~99%。2TP[31]。SRT。120d1.65mg/gCFR。4AGS4.1AGS、。。、、、、。、。DPR50%30%15%[32]。。DPAOsAGS、EPS[33]DPAOs、A/AAGSDPAOs、。AGS、。AGSDPAOsAGS、。A/A/OAGSTPNOx--N90%93%25~33mg/L18.39mg/(g·h)23.72mg/(g·h)1.00gNOx--N1.30gP[34]。NO3--N98dAGS0.3~0.5mmSVI45mL/gCOD、NH4+-NPO43--P88%、96%90%[35]。SBARAGSpH=7.0±0.1ρ(NO3--N)=5mg/Lρ(NO2--N)=15~30mg/LDPR[36]。4℃111dCODNH4+-NPO43--P14、40、40d80.32%、97.82%98.23%DPAOs50d[37]。4.2MNMs、1~100nm、、、、[38]。MNMs、、、、、、。MNMs10%90%MNMs[39]。MNMs、、、ROS[40]。AGSMNMs。、MNMsAGS。50mg/L15AGS[41]。10~100mg/LZnONPsA/O/AAGS[42]。ZnONPsNH4+-NTINTPZnONPsCOD0~8.32%。ZnONPs10.40%~35.21%。AGSEPSZnONPs。20mg/LZnONPs180dCandidatusCompetibacter、Pseudomonas、DechloromonasCandidatusAccumulibacterNitrosomonadaceaeunculturedNitrosomonas0.23%0.16%NitrospiraCandidatusNitrotoga0.88%36.95%CODNH4+-NTINTP[43]。50mg/LAgNPsAGS69d、33.0%45.60%6.80%AGS0.9mm[44]。4.3、、、、、。、、。AGSpH、[45]。AGS。PHB。PHBAGSPHB。WANGAGSPHB40%[46]。AGSEPS。LINAGS[47]。、、。AGSAlginate-likeExopolysaccharides,ALE[48]。FELZALEAGS15%~25%[49]。ALE、、[50]。AGSALE。NationalAlginateResearchProgramme。5AGS。AGS。AGS。AGSAGS。AGS、、AGS。[1]WANX,GAOM,YEM,etal.Formation,characteristicsandmicrobialcommunityofaerobicgranularsludgeinthepresenceofsulfadiazine441116atenvironmentallyrelevantconcentrations[J].BioresourceTechnology,2018,250:486-494.[2]AMORIMCL,ALVESM,CASTROP,etal.Bacterialcommunitydynamicswithinanaerobicgranularsludgereactortreatingwaste-waterloadedwithpharmaceuticals[J].EcotoxicologyandEnvironmentalSafety,2018,147:905-912.[3]WEID,NGOHH,GUOW,etal.Biosorptionperformanceevaluationofheavymetalontoaerobicgranularsludge-derivedbiocharinthepresenceofeffluentorganicmatterviabatchandfluorescenceapproaches[J].BioresourceTechnology,2018,249:410-416.[4]NancharaiahYV,KiranGKR.Aerobicgranularsludgetechnology:Mechanismsofgranulationandbiotechnologicalapplications[J].BioresourceTechnology,2018,247:1128-1143.[5]LOOSDRECHTMCMV,KREUKMKD.Formationofaerobicgranuleswithdomesticsewage[J].JournalofEnvironmentalEngineering,2006,132(6):694-697.[6]ISANTAE,SU魣REZ-OJEDAME,R魱O魣VD,etal.Longtermoperationofagranularsequencingbatchreactoratpilotscaletreatingalow-strengthwastewater[J].ChemicalEngineeringJournal,2012,198/199:163-170.[7]LIUY,MOYB,KONGY,etal.Formation,physicalcharacteristicsandmicrobialcommunitystructureofaerobicgranulesinapilot-scalesequencingbatchreactorforrealwastewatertreatment[J].EnzymeandM