51120191JOURNALOFHARBININSTITUTEOFTECHNOLOGYVol.51No.1Jan.2019DOI10.11918/j.issn.0367-6234.2017111551231.1001912.2011093.201210.、33.12%149%.V211.3A0367-6234201901-0080-07ApplicationofslidingdynamicgridtowavywaterditchingsimulationWUZongcheng1HUANGBoen2WUYacong31.KeyLaboratoryofFluidMechanicsMinistryofEducationBeihangUniversityBeijing100191China2.ShanghaiElectro-MechanicalEngineeringInstituteShanghai201109China3.ShanghaiAircraftDesignandResearchInstituteShanghai201210ChinaAbstractTostudytheeffectofdifferentcoursesofditchingonwavywateraslidingdynamicgridmethodbasedonrigiddynamicgridandslidinggridisdeveloped.Whileensuringthatthefreesurfaceisinthegridencryptionareaitispossibletosimulateanyattitudeoftheairplaneundercomplicatedseaconditions.Bysimulatingthree-dimensionalrectangularflatplateobliqueimpactintowatertheverticalmovementhistoryandthepressuredistributionarecomparedwithexperimentaldatatoverifytheeffectivenessofnumericalmethodandthegridparametersettingexperienceisalsogot.Thesimulationresultsofairplaneditchingoncalmwaterusingslidingdynamicgridmethodarecomparedwithexperimentaldatatoverifytheeffectivenessofslidingdynamicgridmethod.Onthebasisofapplicationofwavemakingmethodnumericalsimulationofthreedifferentditchingcoursesonwavywatersuchasheadingwavesfollowingwavesandparalleltowavesaremade.Bycomparingandanalyzingthemovementhistoryandtheforceofdifferentpartsitisconcludedthattheoptimalcourseofditchingonwavywaterisparalleltowavestheverticalimpactpeakis12%largerthanthatoncalmwaterandtheeffectsofrollandyawmotionissmall.Themostdangeroussituationisheadingwaveswhichwillproducelargerpitchangletheverticalimpactpeakis149%largerthanthatofcalmwaterditchingandwillsuffermanywaveimpacts.Keywordsairplaneditchingwavywaterdynamicgridnumericalsimulation2017-11-291967—hbe333@163.com.vonKarman1Wagner2-3..CFD4.Guo5.Qu6FLUENTNACATN2929.Bensch7-8hybridmethod.Hua9LS-DYNAALE..、、3.1.VOFRANSk-ωSST-Menter.10.1a..1b..3.1c.31.13Fig.1Comparisonofthreedynamicgridmethods.22.11951Smiley11..、2.b=0.305mλpλdλp-λd.2Fig.2Diagramofplateobliqueimpactintowaterτ=15°u=13.259m/sv=2.347m/s533.425kg..、、0.5m1.·18·11Tab.1Gridparameters/m/m/80.0200.000201.2104890.0100.000101.215135100.0050.000051.2203843、..3Fig.3Movementhistoryof3Dplateobliqueimpactintowater4Smiley.4.λddλp/dλd>1dλp/dλd1λp≥2.a-b-4-Fig.4Relationshipbetweenthewettedlengthandthelengthbelowtheundisturbedwatersurface5.C11vC=uf1+2sinγsinγ+τdλpdλd-1cosτ+{sinγsinγ+τdλpdλd-1[]2}1/2.·28·51γ=arctanv/uuf=u+vcotτ.5Fig.5PressuredistributionatthecenterlineofthebottomvC6.0.831.v、γdλp/dλdvC.6Fig.6Cpdistributionatthecenterlineofthebottom.2.21953Mcbride12NACATN2929、.Streckwall13RANSCOMETDITCHA.5.67kg10°9.144m/sA1.219m61.676m60°...、.xzOXOZOX.7、、COMETDITCH.7Streckwall.7Fig.7Movementhistorycomparisonofnumericalsimulationandexperimentsothermethods·38·10.25s35°38°0.93s-10°-8°-2°..COMETDITCH.33.1141.6~3.6m3.0m.3.0m5.15L/H20~40L/H=30L90m.NACATN29291.2m73736m1/30.H0.1mL3.0m.StokesTT=2πL/槡gη=H/2coskx-ωt+πH/4H/Lcoskx-ωt.k=2π/Lω=2π/T.13m×16m.x=0m、4m.8.ax=0mbx=4m8Fig.8Comparisonofwaveformandtheoreticalvalueofdifferentmonitoringpoints3.2196916.3.12.2...16.9.ab9Fig.9Initialpositionsofditching3.3103、.40°35°33°..、.3120N12%29%270N149%.10c3.·48·5110Fig.10Pitchangleandforcecurvesofditchingonwavywaterandcalmwater.11.11Fig.11Ditchingprocessparalleltowaves、、、5.12.1s0.2~0.3s1.2s28.5°.7373.76m.13.0.5s0°0.5~0.8s..12Fig.12Variationofairplanerollangleandrollmomentofdifferentparts13Fig.13Variationofairplaneyawangleandyawmomentofdifferentparts12%·58·1149%.41.2、..3.1VONKARMANT.TheimpactonseaplanefloatsduringlandingNACATN321R.WashingtonNACA19292WAGNERH.LandingofseaplanesNACATM622R.Washing-tonNACA19313WAGNERH.berstoβ-undgleitvorgngeanderoberflchevonflüssigkeitenJ.ZeitschriftfürAngewandteMathematikundMechanik1932124193.DOI10.1002/-zamm.193201204024.D.2013GUOBaodong.NumericalstudyonthehydrodynamiccharacteristicsofciviltransportinditchingD.BeijingBeihangUniversity20135GUOBaodongLIUPeiqingQUQiulinetal.EffectofpitchangleoninitialstageofatransportairplaneditchingJ.ChineseJournalofAeronautics201326117.DOI10.1016/j.cja.2012.12.0246QUQiulinHUMingxuanGUOHaoetal.Studyofditchingchar-acteristicsoftransportaircraftbyglobalmovingmeshmethodJ.JournalofAircraft20155251.DOI10.2514/1.C0329937BENSCHLSHIGUNOVVBEUCKGetal.PlannedditchingsimulationofatransportairplaneC//KRASHUsers’Seminar.Phoenixs.n.20018BENSCHLSHIGUNOVVSDINGH.ComputationalmethodtosimulateplannedditchingofatransportairplaneC//SecondMITConferenceonComputationalFluidandSolidMechanics.BostonComputationalFluid&SolidMechanics20031251.DOI10.1016/B978-0080440460/-50307-99HUACFANGCCHENGJ.Simulationoffluid-solidinteractiononwaterditchingofanairplanebyALEmethodJ.Journalofhy-drodynamics2011235637.DOI10.1016/S1001-60581060159-X10.NUMECAM.2013GUORan.NUMECAseriesoftutorialsM.BeijingMachineryIn-dustryPress201311SMILEYRF.Anexperimentalstudyofwater-pressuredistributionsduringlandingsandplaningofaheavilyloadedrectangularflat-platemodelNACATN2453R.WashingtonNACA195112MCBRIDEEEFISHERLJ.Experimentalinvestigationoftheeffec