4高三第一轮复习——无理不等式、指数与对数不等式的解法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1高三第一轮复习——无理不等式、指数与对数不等式的解法1.无理不等式解无理不等式关键是把它同解变形为有理不等式组一.)()(0)(0)()()(xgxfxgxfxgxf定义域型例1.解不等式0343xx解:∵根式有意义,∴必须有:303043xxx,又有∵原不等式可化为343xx两边平方得:343xx,解之:21x,∴}3|{}21|{}3|{xxxxxx二.0)(0)()]([)(0)(0)()()(2xgxfxgxfxgxfxgxf或型例2.解不等式xxx34232解:原不等式等价于下列两个不等式组的解集的并集:(Ⅰ):222)34(23023034xxxxxx,或(Ⅱ):0340232xxx解(Ⅰ)得:345623562134xxxx,解(Ⅱ)得:234x∴原不等式的解集为}256|{xx三.2)]([)(0)(0)()()(xgxfxgxfxgxf型例3.解不等式24622xxx解:原不等式等价于222)2(462020462xxxxxx}10102|{100212xxxxxxx或或特别提醒注意:取等号的情况2例4.解不等式1112xx解:要使不等式有意义必须:2112101012xxxxx原不等式可变形为1112xx因为两边均为非负∴22)1()112(xx即)1(122xx∵x+1≥0∴不等式的解为2x+1≥0即21x例5.解不等式36922xxx解:要使不等式有意义必须:306033060922xxxxxx在0≤x≤3内0≤29x≤30≤26xx≤3∴29x326xx因为不等式两边均为非负两边平方得:22266699xxxxx即26xxx因为两边非负,再次平方:226xxx解之0x3综合得:原不等式的解集为0x3例6.解不等式1123xx解:定义域x-1≥0,x≥1,原不等式可化为:3211xx两边立方并整理得:)1(41)2(xxx在此条件下两边再平方,整理得:0)10)(2)(1(xxx解之并联系定义域得原不等式的解为}1021|{xxx或针对训练:解下列不等式1.655332xxx2.33333xxxx3.xx2144.02)1(2xxx5.112xx3参考答案:1.)2(x2.)3(x3.(12135x)s4.)12(xx或5.)2511(x2.指数与对数不等式的解法一.知识回顾:(1))()(xgxfaa)()(xgxfaa当10a时)()(xgxf;当1a时)()(xgxf。(2))0(,)(bbaxf当10a时baxflog)(;当1a时baxflog)(。(3))()(loglogxgaxfa当10a时)()(0xgxf;当1a时0)()(xgxf。(4)bxfa)(log当10a时baxflog)(;当1a时baxflog)(。二.典型例题:例1、解不等式)1(332)21(22xxx解:原不等式可化为:)1(332222xxx,∵底数21,∴)1(3322xxx,整理得:062xx,解之得不等式的解集为{x|-3x2}例2、解不等式2931831xx解:原不等式可化为:018329332xx即:0)233)(93(xx,即:93x或323x∴x2或32log3x,∴不等式的解集为{x|x2或32log3x}例3、解不等式2)1(log3xx解:原不等式等价于2)3(11301xxxx,或2)3(113001xxxx,解之得:4x≤5∴原不等式的解集为{x|4x≤5}例4、解关于x的不等式:)1,0(,2log)12(log)34(log2aaxxxaaa解:原不等式可化为)12(2log)34(log2xxxaa当a1时有221234121)12(23403401222xxxxxxxxxx4当0a1时有42234121)12(23403401222xxxxxxxxxxx或∴当a1时不等式的解集为221x;当0a1时不等式的解集为42x例5、解不等式24logaxxxxa解:两边取以a为底的对数:当0a1时原不等式化为:2log29)(log2xxaa∴0)1log2)(4(logxxaa,4log21xa,∴axa4当a1时原不等式化为:2log29)(log2xxaa∴0)1log2)(4(logxxaa,∴21log4logxxaa或,∴axax04或∴原不等式的解集为}10,|{4aaxax或}1,0|{4aaxaxx或针对训练:解下列不等式1.)10(,422aaaaxxx且2.)102(log)43(log31231xxx3.xx4)21(324.2222232xx5.当10a,求不等式:0)(loglogxaa6.)1,0(,011logaaxxa7.1a时解关于x的不等式0]1)2(2[log12xxxxaaa参考答案:1.(当a1时),4()1,(x当0a1时)4,1(x)2.(-2x1或4x7)3.(-1x3)4.)121(x5.(ax1)6.(-1x0)7.(2log,22axa;2log,212axa;x,2a)

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功