技术石化二级出水处理工艺

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

技术|石化二级出水处理工艺石化废水主要是指在石油炼化、加工过程中产生的废水,该类废水具有水量大、水质复杂、有机污染物浓度高、毒性大,难生物降解等特点,属于较难处理的工业废水,对环境污染严重。中国目前每年的工业废水排放量超过2.1×1010t,石化废水排放量大约占3%-4%。石化废水的二级处理一般采用活性污泥法为主的处理工艺,处理后的出水COD一般在100mg·L-1左右。石化工业园区内有些装置出水含磷较高,如丁苯橡胶废水,造成最终二级出水中TP浓度偏高。随着世界各国对水体水生态和饮用水安全标准的提高,中国政府于2015年7月实施《石油化学工业污染物排放标准》(GB31571-2015),二级出水中COD、TP等主要有机污染物浓度达标压力较大,我国大部分石化综合污水厂面临着深度处理的技术需求。曝气生物滤池(BAF)是一种膜法生物处理工艺,可以用于SS去除,有机物去除,硝化除氮、反硝化脱氮和除磷等,具有比表面积大、有机负荷高、工艺简单、过滤作用好及易于反冲洗等特点,在国内外污水深度处理中已广泛应用。臭氧由于其强氧化性(氧化还原电位为2.07V,在水中仅比氟原子、氧原子和羟基自由基低),能够显著地改变有机物的分子结构,提高废水的生化性,在污水处理方面研究一直备受关注。臭氧和BAF组合工艺既发挥了化学氧化的有效性,又兼顾了生物处理的经济型,在石化废水深度处理方面有广阔的应用前景。近年来,臭氧和BAF组合工艺在工业废水深度处理中得到了广泛应用,并且发现BAF-臭氧组合工艺更适合于石化二级出水的深度处理。但是目前研究多集中于COD处理效果,对TP处理效果研究很少。由于BAF的结构导致生物除磷的效果非常有限,需要投加铁盐等除磷药剂来强化除磷。为了同时降低COD与TP浓度,以达到最新排放标准要求,本研究探究了投加FeSO4·7H2O的BAF-臭氧强化组合工艺对石化二级出水的处理效果,同时在机制上对处理过程中有机物的相对分子质量及种类变化情况进行了探讨,以期为BAF-臭氧组合工艺原位投加FeSO4·7H2O强化处理石化二级出水的应用提供理论依据和技术支持。1、材料与方法1.1试验用水和试验装置1.1.1试验用水试验用水取自某石化工业园区污水处理厂二级出水,园区内主营石油化工兼有少量化肥厂,该厂承接了园区内60余套生产装置排放的废水,采用水解酸化、A/O法进行生化二级处理,水质随不同装置的检修具有一定的波动性。试验期间主要水质特征为:pH6-8,COD60-120mg·L-1,NH4+-N的平均值为5.83mg·L-1,TP的平均值为1.37mg·L-1。1.1.2试验装置及运行试验装置为有机玻璃制作的上向流BAF-臭氧,共两组(投加FeSO4·7H2O组为1号,不投加FeSO4·7H2O的对照试验组为2号),其尺寸及结构相同。BAF-臭氧组合工艺装置如图1所示,BAF反应柱和臭氧反应柱内径分别为70mm和100mm,高度均为1.6m,内部填充火山岩滤料,填充高度分别为0.8m和0.7m。反应器均使用蠕动泵BT-100型创锐作为进水泵,BAF反应柱在底部曝气,采用曝气泵、流量计控制曝气量,BAF使用蠕动泵投加FeSO4·7H2O。臭氧制备以工业级纯氧作为氧气源、山美水美YG-5臭氧发生器、防腐蚀臭氧专用流量计、LIMICEN臭氧浓度监测仪组合运行。图1反应器流程示意1号和2号两组试验同时进行,根据课题组前期研究,FeSO4·7H2O投加量为9mg·L-1时强化除磷效果较好,确定BAF段工艺参数HRT=1h,气水比3:1,FeSO4·7H2O投加量为9mg·L-1;课题组前期研究表明投加量为10mg·L-1时臭氧氧化效果较好,确定臭氧投加量为10mg·L-1,HRT=30min。石化废水二级出水有机污染物种类较多、水质变化较大,工艺连续运行10d观察污染物去除效果。1.2测试指标与测试方法1.2.1常规指标分析方法试验分析的常规指标COD、NH4+-N和TP等,均采用国家标准分析方法进行测定。废水中有机物分子量分级采用超滤法,具体操作参照文献进行。1.2.2三维荧光分析方法采用日本日立公司出产的HITACHIFL-7000型三维荧光分光光度计对所取的水样进行三维荧光测定。为防止水样中的非溶解性颗粒对水样测定的影响,水样需先经过0.45μm醋酸纤维膜过滤,再进行测定。激发波长200-500nm与发射波长为250-550nm,狭缝宽度5nm,等高线宽度10nm,扫描速率为12000nm·min-1的条件下,测定样品的三维荧光光谱特性。数据采用Origin软件进行处理,以等高线图表征。1.2.3GC-MS测试方法采用文献中方法对水样进行预处理后,经气相色谱-质谱联用仪定性分析(Agilent7890,美国),所测得图谱与NIST质谱图数据库进行对比获得样品信息。HP-5MSUI型色谱柱,对水样进行半挥发性有机物定性分析。采用毛细色谱柱HP-5MS,30m×250μm×0.25μm;升温程序:初始温度40℃保持3min,以8℃·min-1的速率升温至200℃保持3min,然后以10℃·min-1的速率升温到280℃保持1min,后运行温度300℃;载气流速9mL·min-1的高纯氦气(99.999%);分流比5∶1;进样口温度260℃。质谱条件:电离方式为电子轰击源,离子源温度230℃,四级杆温度150℃,EI源为70eV。扫描方式为全扫描,质量扫描范围29-350m/z,溶剂延迟时间2.5min。2、结果与讨论2.1组合工艺运行效果2.1.1组合工艺对COD的去除1号、2号组合工艺对COD的去除效果如图2所示。进水COD平均浓度为82.91mg·L-1,1号BAF出水COD平均浓度为73.61mg·L-1,臭氧出水平均浓度为39.63mg·L-1,平均去除率为52.20%;2号BAF出水COD平均浓度为76.91mg·L-1,臭氧出水平均浓度为53.85mg·L-1,平均去除率为35.05%。1号组合工艺COD去除率较2号组合工艺高17.15%,Fe2+的投加对组合工艺中BAF段和臭氧段COD去除效果均有提高,对臭氧段提高效果最为明显。1号组合工艺中,BAF段对COD的去除效率较2号BAF段高4%左右,FeSO4·7H2O对COD的去除有一定的促进作用。这是由于投加FeSO4·7H2O增加了滤料的截留能力;Fe2+带正电荷,促进了有机物向带负电的微生物细胞膜表面的迁移;同时Fe也是微生物生长所需要的一种金属元素,适量的Fe会促进微生物的代谢作用。由图2可以看出,COD的去除主要集中于臭氧工艺段,其中1号组合工艺臭氧平均去除率为40.98%,2号组合工艺臭氧平均去除率为27.81%,投加铁盐后臭氧对COD的去除效果明显升高。这是因为投加FeSO4·7H2O后,BAF出水含有Fe2+和Fe3+,这两种离子是常见的臭氧氧化均相催化剂,Sauleda等提出了Fe2+催化分解臭氧形成·OH的机制,见反应式(1)和(2)。臭氧在Fe离子催化作用下形成的·OH与有机物的反应速率更高、氧化性更强,可以氧化臭氧单独氧化无法降解的小分子有机酸、醛等,可以将有机物完全矿化,提高污水中有机物的去除率。2.1.2组合工艺对TP的去除1号、2号组合工艺对TP的去除效果如图3所示。进水TP平均浓度为1.37mg·L-1,1号BAF出水TP平均浓度为0.46mg·L-1,臭氧出水平均浓度为0.39mg·L-1,TP平均去除率为71.50%;2号BAF出水TP平均浓度为1.27mg·L-1,臭氧出水平均浓度为1.10mg·L-1,TP平均去除率为19.69%。1号组合工艺TP去除率明显高于2号组合工艺,这说明FeSO4·7H2O的投加对BAF-臭氧组合工艺去除TP有非常明显的促进作用,由图3可以看出,TP的去除主要在BAF段进行。图3组合工艺对TP的去除效果1号BAF段TP平均去除率为66.52%,较2号BAF段高约60%,这是因为铁盐是一种高效的化学除磷药剂,化学强化除磷和生物协同除磷相结合,大大促进了除磷效果,与课题组前期研究得出的FeSO4·7H2O能有效强化BAF对石化二级出水除磷作用结论一致。经过臭氧的氧化,出水TP的浓度继续降低。大分子有机物在无机胶体颗粒(正磷酸盐沉淀)表面形成有机物保护层,造成双电层排斥作用,使胶体的稳定性增加。而臭氧氧化可使大分子有机物转化至小分子物质,将稠环芳烃的多环结构和共轭键的物质断裂、加成,破坏有机物对胶体保护作用,使得胶体脱稳后沉降被臭氧段滤料截留。与2号臭氧段相比,1号臭氧段TP去除效率有所升高,但是升高幅度较小。2.2不同分子量有机物去除特性BAF降解和臭氧氧化对废水中有机物的相对分子质量的变化有显著影响。图4是两个反应器对不同分子量有机物的去除情况比较。从中可以看出,原水中溶解性有机物主要集中在相对分子质量小于1×103之内,经过BAF-臭氧组合工艺处理后,两组工艺出水有机物总量大幅下降。图4BAF-臭氧处理前后相对分子质量分布及TOC对比经过BAF处理后,两组工艺各梯度的相对分子质量有机物都有一定去除,其中分子量3×103-5×103的有机物去除最为明显。1号组合工艺BAF段出水各分子量有机物去除效率高于2号组合工艺,这是由于FeSO4·7H2O在水解过程中形成的Fe2+、Fe3+高价态正电荷离子通过静电引力,可置换胶体颗粒表面较多的低价正离子,使双电层变薄,进而使得排斥势垒减弱直至消失,胶体颗粒发生凝聚作用,因此,FeSO4·7H2O在水解过程中形成的Fe2+、Fe3+络合物能与废水中的胶体颗粒絮凝沉,可有效地去除废水中的有机物。与BAF段出水趋势相反,两组工艺臭氧段出水中相对分子质量3×103-5×103的有机物所占比例升高,而大分子有机物(相对分子质量5×103的有机物)总量大幅下降,这可能是因为臭氧将相对分子质量5×103以上的有机物破碎分解,生成部分相对分子质量3×103-5×103的有机物。由图4(b)中看出,原水相对分子质量小于1×103的有机物占52%左右,经过BAF-臭氧处理后,1号、2号组合工艺臭氧段出水中相对分子质量小于1×103的有机物所占百分比分别为75.39%和65.38%,较臭氧氧化前显著升高。这是由于O3臭氧具有极强的氧化性,破坏CC、NN、CO等不饱和键,可将大分子物质氧化成低毒、易降解小分子、甚至彻底矿化为CO2和H2O。图5BAF-臭氧处理石化二级出水前后三维荧光图1号组合工艺臭氧氧化效率高于2号组合工艺,这是因为1号组合工艺BAF出水中含有一定量的Fe2+、Fe3+络合物,这些物质作为催化剂,臭氧在其表面被吸附富集,并与催化剂表面羟基基团作用,羟基基团促进臭氧分解,形成的·OH使有机物的降解速率更高。2.3三维荧光光谱特征研究石化二级出水、1号、2号工艺各段出水中溶解性有机物三维荧光光谱如图5所示,其主要荧光峰有3个,其中,Flu1为色氨酸类芳香族蛋白质荧光峰;Flu2为类溶解性微生物代谢产物荧光峰;Flu3为类腐殖酸的荧光峰。通过进一步分析三维荧光光谱的数据矩阵,得到各荧光峰的位置及对应的荧光强度(FI)见表1。Flu4表征水样中总荧光峰,其荧光强度是水样中Flu1-Flu3荧光峰的荧光强度之和。石化二级出水经过2号工艺BAF处理后各荧光峰强度提高,这是因为一些溶解性微生物代谢产物例如多糖、蛋白、腐殖质物质在BAF处理中产生,而这些物质均有一定的荧光性。加铁盐的1号BAF出水总荧光峰Flu4强度比石化二级出水略低,这是由于铁元素是微生物所需的微量元素,一定量的FeSO4·7H2O可促进微生物代谢,增强微生物活性,导致BAF生化作用增强,而类溶解性微生物代谢产物和类腐殖质均属于生化性较强的物质,更容易被BAF去除,所以Flu2和Flu3的荧光峰强度较石化二级出水均有降低。然而Flu1的荧光峰强度较石化二级出水升高,首先因为石化废水中所含的有机物多以苯环刚性结构有机物、π—π共轭双键的不饱和有机物为主,BAF工艺并不能够有效去除毒性较大的类芳香族蛋白质,其次BAF生化反应产生的

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功