日处理8万吨污水处理厂工艺设计方案计算公式f0d03e5da88271fe910ef12d2a

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

I目录第1章前言················································································1第2章水质标准、方案选择与工艺流程·············································22.1水质标准与工艺流程·····························································22.2方案选择············································································22.3原始数据确定······································································3第3章设计流量的计算和污水水质污染程度的确定······························43.1污水流量的计算···································································43.2污水水质污染程度的确定·······················································4第4章主要构筑物设备及工艺设计···················································54.1格栅··················································································54.2沉砂池···············································································94.3巴氏计量槽········································································104.4初沉池··············································································104.5A/O氧化沟·········································································124.6二次沉淀池········································································164.7污泥处理设计·····································································184.8自动控制系统·····································································22第5章工艺设计特点······································································23致谢···································································错误!未定义书签。参考文献······························································错误!未定义书签。1第1章前言水是人类的宝贵资源。由于淡水资源日益匮乏及其污染程度的不断加剧,发展环境保护事业,建立污水处理厂,将工业、家庭生活排放的污水,经城市污水处理厂治理后,使之达到国家规定的排放标准,已成为各国政府十分关注的大事。但是,城市污水处理是一门涉及生物、化学、物理等多门学科的综合性技术,其工艺机理较为复杂。随着人类社会的发展,特别是都市化和工业化的迅速发展,污水排放量大大超过了天然水体的自净能力,造成严重的环境污染和生态失衡。在人口聚集的城市、乡镇和排放废水的工矿企业设立污水处理厂,是保护自然环境和人类健康的必要措施。随着环保法律的不断规范和日益严格,我国将逐步建立数以千计的城市污水处理厂。有学者曾根据日处理污水量将污水处理厂分为大、中、小三种规模:日处理量大于10万m3为大型处理厂,1-10m3万为中型污水处理厂,小于1万m3的为小型污水处理厂。近年来,大型污水处理厂建设数量相对减少,而中小型污水厂则越来越多。如何搞好中、小型污水处理厂,特别是中型污水厂,是近几年许多专家和工程技术人员比较关注的问题。本文主要研究的是日处理80000吨污水的中型污水处理厂。2第2章水质标准、方案选择与工艺流程2.1水质标准与工艺流程根据城市污水排放资料,并参照同类型城市污水处理厂实测资料,确定本工程设计进水水质为:BOD=100mg/L,COD=200mg/L,SS=200mg/L,TN=20mg/L,TP=3mg/L。参照《污水综合排放标准》(GB8978-96),确定设计出水水质为:BOD≤20mg/L,COD≤60mg/L,SS≤20mg/L,TN≤15mg/L,TP≤1mg/L。根据原污水水质和排放要求,污水、污泥处理工艺流程见图2.1。图2.1污水、污泥处理工艺流程2.2方案选择1.应根据原始数据与城市地质情况,确定污水处理厂的大概规模,之后要根据水体自净能力、要求处理水质以及当地的具体条件来确定污水处理程度与处理工艺流程。优化选择的工艺流程。平面图布置紧凑,便于管理。2.在确定流程时,同时选择适宜的处理单位构筑物类型。对其进行设计计算时,确定包括有关设计参数、负荷、尺寸与所需的材料、规格等。3.根据原始水质资料、当地具体情况以及污水性质与成分,选择合适的污泥处理工艺方程进行各单位构筑物的设计计算。32.3原始数据确定本设计主要处理为城市生活污水。污水处理量为平均日处理80000m3,预计最大处理量为日处理150000m3。本设计部分数据是根据潮州市第一污水处理厂标准数据来确定的。潮州市第一污水处理厂设计服务范围为31.8km2,人口35万人,近期设计流量为8万m3/d,避开了城市夏季主导风向,紧靠受纳水体三利溪,有利于污水管道建设和环境保护。4%90%10020020200%100ssssssCSSCE%80%10010020100%100BODBODBODCBODCE第3章设计流量的计算和污水水质污染程度的确定3.1污水流量的计算sLdmQ/93.925/10834平均(3-1)sLdmQ/11.1736/101534max(3-2)3.2污水水质污染程度的确定1.按照排污口出水水质要求计算ESS。(3-3)2.按照排污口出水水质要求计算EBOD。(3-4)5第4章主要构筑物设备及工艺设计4.1格栅格栅的主要作用是将污水中的大块污物拦截,以免其对后续处理单元的机泵和工艺管线造成损坏。由一组平行的金属栅条或筛网制成,被安装在污水渠道、泵房集水井的进口处或污水处理厂的端部,用以截留较大悬浮物,以便减轻后续处理构筑物的处理负荷,并使之正常运行。格栅上的拦截物称为栅渣,其中包括数十种杂物,大至腐尸,小至树杈、木塞、破布条、碎砖石块、瓶盖、尼龙绳等均能在栅渣中发现。格栅有很多种类。按栅条的形式分有直棒式栅条格栅、转筒式格栅、辐射式格栅、弧形格栅和活动栅条格栅,最常见的格栅是直棒式栅条格栅。按照栅条之间的距离可分粗格栅和细格栅。近年来,由于各种格栅的使用,有人把格珊分为三类:栅距大于40mm的粗格珊,也称保护型格栅;栅距在4--10mm的称细格栅;栅距在15—25mm的称中格栅。中小型城市的生活污水处理厂或所需截留的污染物量较少时,可采用人工清理的格栅。这类格栅是用直钢条制成,一般与水平面成45°—60°倾角安放,倾角小时,清理时较省力,但是占地则较大。人工清渣的格栅,其设计面积应采用较大的安全系数,一般不小于进水管渠有效面积的2倍,以免清渣过于频繁。在污水泵站前集水井中的格栅,应特别注重有害气体对操作人员的危害,并应采取有效的防范措施。格栅间应设置操作平台。机械清渣的格栅,倾角一般为60°—70°,有时为90°。机械清渣格栅过水面积,一般应不小于进水管渠的有效面积的1.2倍。格栅栅条的断面形状有圆形、矩形以及方形,圆形的水力条件较方形的好,但是刚度较差。目前多采用断面形式为矩形的栅条。设置栅条的渠道,宽度要适当,应使水流保持适当的流速,一方面泥砂不至于沉积在沟渠的底部,另一方面截留的污染物又不至于冲过格栅。通常采用0.6-1.0m/s,最大流量时可高于1.2-1.4m/s。4.1.1粗格栅间根据近期设计流量过栅流速0.8m/s,栅条间隙20mm。共设两道自动除渣的机械格栅,每道机械格栅宽1m,栅条厚度10mm,安装角度75°,栅前水深1m,配6528.0102.0275sin736.1sinNbhvQnnaxmbnnSB55.15202.0)152(01.0)1(mvhNQB085.1218.0736.1max1mtgtgBBl64.0202085.155.1211mll32.0264.0212mgvkh091.075sin81.928.0)02.001.0(42.23sin22342134)(bS电功率0.6kW。在每道粗格栅前后均装有电动闸板,备作检修时切换用。机械格栅的耙渣机可人工启动、定时启动或根据格栅前后水位差自动运行。(1)栅条间隙数n(4-1)式中α——格栅倾角N——格栅数b——格栅间隙宽度v——污水过栅流速(2)栅槽宽度(4-2)(3)暗渠宽度(4-3)(4)进水渠道渐宽部分长度设渐宽部分的倾角为β=20°则:(4-4)(5)栅槽与进水渠道连接部分渐窄部分的长度(4-5)(6)通过格栅的水头损失的计算(4-6)式中h1——水头损失(m);k——格栅受污染物阻塞后水头损失增大倍数,栅条为矩形断面,取k=3;——阻力系数,β=2.42(锐边矩形)7mtgtgHllL81.2753.15.00.132.064.05.00.1121dmKWQWZ/0.10100020.18640008.0736.110008640031maxmNbhvQn10975.01.1006.0360sin736.1sinmaxg——重力加速度(m/s2)(7)栅后槽总高度设栅前槽高度h2=0.3m栅前总高H1=h+h2=1.0+0.3=1.3m栅后总高H=h+h1+h2=1.0+0.091+0.3=1.391m(8)格栅总长度(4-7)(9)每日栅渣量(4-8)式中W1——栅渣量,取W1=0.08;KZ——生活污水流量总变化系数,取KZ=1.204.1.2进水泵房厂区进水泵房按预计流量规模设计。选用3台350QW1500-15-90型潜污泵,1台200QW400-15-30型潜水泵,Q=400m3/h,H=15m,n=980r/min,N=30kW。2台350QW1500-15-90型潜污泵(考虑一台备用),Q=1500m3/h,H=15m,n=990r/min,N=90kW。进水房平面净尺寸为18.1m9.2m,地下深度为9.1m。4.1.3细格栅间本工程细格栅间和涡流沉砂池为合建式。根据设计流量过栅流速0.75m/s,栅条间隙6mm。设自动除渣的机械细格栅,每道机械格栅宽1.2m,栅条厚度4mm,栅前水深1.1m,配电功率0.6kW。机械格栅的耙渣机可人工启动、定时启动或根据格栅前后水位差自动运行。(1)栅条的间隙数设格栅的格栅倾角α=60°,格栅数N=3(4-9)(2)栅槽的

1 / 25
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功