污水生物处理基本概念和生化反应动力学基础

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第三章废水生物处理的基本概念和生化反应动力学基础121.污水生物处理技术的起源和发展微生物的特点和污水生物处理的概念污水生物处理工艺的应用历史污水生物处理技术的发展过程前景展望第一节概述3环境生物技术EnvironmentalBiotechnologyEnvironmentalBioengineering现代生物技术与环境工程相结合的新兴交叉学科在解决环境污染问题中具有非常重要的作用环境生物技术的核心是微生物工程4微生物对污染物降解的巨大潜力个体微小、比表面积大、代谢速率快比表面积大:大肠杆菌与人相比,其比表面积约为人的30万倍,为营养物的吸收与代谢产物的排泄奠定了基础;代谢速度快:发酵乳糖的细菌在1h内可分解其自重的1000~10000倍;假丝酵母(Candidautilis)合成蛋白质的能力比大豆强100倍,比食用公牛强10万倍。5种类繁多、分布广泛、代谢类型多样W.B.Whitman(U.OfGeorgia)细菌普查,地球上存在51030个细菌,非常活跃的群体在海、陆、空等一般环境和极端环境中的极端环境微生物;Pseudomonascepacia(假单胞菌脂肪酶):能降解90种以上有机物甲基汞、有毒氰、酚类化合物等都能被微生物作为营养物质分解利用。大肠杆菌在合适的生长条件下:12.5~20分钟繁殖1代每小时分裂3代,由1个变成8个。经24小时分裂72代,重约4722吨经48小时可产生2.2×1043个后代。微生物代时及每日增殖率微生物名称代时(分)温度日增殖率乳酸菌38252.7×10^11大肠杆菌18371.2×10^24根瘤菌110258.2×10^3枯草杆菌31307.2×10^13光合细菌144301.0×10^3酿酒酵母120304.1×10^3念珠藻1380252.1硅藻1020202.64小球藻4202510.6草履虫642264.92繁殖快、易变异、适应性强7繁殖快、易变异、适应性强低温、高温、高压、酸、碱、盐、辐射等条件下可以快速适应;对于进入环境中的“陌生”污染物,微生物可通过突变而改变原来的代谢类型而降解之8第二节污水生物处理的基本原理91.微生物的新陈代谢新陈代谢:微生物不断从外界环境中摄取营养物质,通过生物酶催化的复杂生化反应,在体内不断进行物质转化和交换的过程。分解代谢:分解复杂营养物质,降解高能化合物,获得能量。合成代谢:通过一系列的生化反应,将营养物质转化为复杂的细胞成分,机体制造自身。10新陈代谢合成代谢(同化作用)分解代谢(异化作用)复杂物质分解为简单物质简单物质合成为复杂物质吸收能量释放能量能量代谢物质代谢分解与合成的相互关系:1)二者不可分,而是相互依赖的;a、分解过程为合成提供能量和前物,而合成则给分解提供物质基础;b、分解过程是一个产能过程,合成过程则是一个耗能过程。2)对有机物的去除,二者都有重要贡献;3)合成量的大小,对后续污泥的处理有直接影响(污泥的处理费用一般可以占整个城市污水处理厂的40~50%)。11微生物的呼吸一切生物时刻都在进行着呼吸,没有呼吸就没有生命。呼吸作用的生物现象:呼吸作用中发生能量转换:供细胞合成、其他生命活动,多余的能量以热量形式释放。通过呼吸作用,复杂有机物逐步转化为简单物质。呼吸作用过程中吸收和同化各种营养物质。12微生物的呼吸类型微生物的呼吸指微生物获取能量的生理功能好氧呼吸厌氧呼吸根据氧化的底物、氧化产物的不同按反应过程中的最终受氢体的不同自养型微生物无氧呼吸异养型微生物发酵根据受氢体的不同分为13好氧呼吸是营养物质进入好氧微生物细胞后,通过一系列氧化还原反应获得能量的过程。有分子氧参与的生物氧化,反应的最终受氢体是分子氧。依好氧微生物的类型不同,被其氧化的底物不同,氧化产物也不同。好氧呼吸有异养型微生物呼吸和自养型微生物呼吸两种。好氧呼吸141.异养型微生物异养型微生物以有机物为底物(电子供体),其终点产物为二氧化碳、氨和水等无机物,同时放出能量。如下式所示:有机废水的好氧生物处理,如活性污泥法、生物膜法、污泥的好氧消化等属于这种类型的呼吸。2817.3kJO6H6CO6OOHC2226126能量NHO13H11COH14ONOHC422272911152.自养型微生物自养型微生物以无机物为底物(电子供体),其终点产物也是无机物,同时放出能量。能量SOH2OSH4222能量OH2HNO2ONH2324大型合流污水沟道和污水沟道存在该式所示的生化反应生物脱氮工艺中的生物硝化过程光能自养微生物:需要阳光或灯光作能源,依靠体内的光合作用色素合成有机物。CO2+H2O[CH2O]+O2化能自养微生物:化能自养微生物不具备色素,不能进行光合作用,合成有机物所需的能量来自氧化NH3、H2S等无机物。光叶绿素16厌氧呼吸是在无分子氧(O2)的情况下进行的生物氧化。厌氧微生物只有脱氢酶系统,没有氧化酶系统。在呼吸过程中,底物中的氢被脱氢酶活化,从底物中脱下来的氢经辅酶传递给除氧以外的有机物或无机物,使其还原。厌氧呼吸的受氢体不是分子氧。在厌氧呼吸过程中,底物氧化不彻底,最终产物不是二氧化碳和水,而是一些较原来底物简单的化合物。这种化合物还含有相当的能量,故释放能量较少。厌氧呼吸按反应过程中的最终受氢体的不同,可分为发酵和无氧呼吸。厌氧呼吸171.发酵指供氢体和受氢体都参与有机化合物的生物氧化作用,最终受氢体无需外加,就是供氢体的分解产物(有机物)。这种生物氧化作用不彻底,最终形成的还原性产物,是比原来底物简单的有机物,在反应过程中,释放的自由能较少,故厌氧微生物在进行生命活动过程中,为了满足能量的需要,消耗的底物要比好氧微生物的多。例如,葡萄糖的发酵过程:总反应式:4[H]COCOOH2CHOHC36126CHO2CH2COCOCOOH2CH323OHCH2CHCHO2CH4[H]23392.0kJ2COOHCH2CHOHC2236126182.无氧呼吸是指以无机氧化物,如NO3-,NO2-,SO42-,S2O32-,CO2等代替分子氧,作为最终受氢体的生物氧化作用。在反硝化作用中,受氢体为NO3-,可用下式所示:总反应式:在无氧呼吸过程中,供氢体和受氢体之间也需要细胞色素等中间电子传递体,并伴随有磷酸化作用,底物可被彻底氧化,能量得以分级释放,故无氧呼吸也产生较多的能量用于生命活动。但由于有些能量随着电子转移至最终受氢体中,故释放的能量不如好氧呼吸的多。24[H]6COO6HOHC226126O12H2N4NO24[H]2231755.6kJ2NO6H6CO4NOOHC2223612619好氧呼吸、无氧呼吸、发酵三种呼吸方式,获得的能量水平不同,如下表所示。呼吸方式受氢体化学反应式好氧呼吸能量利用率42%分子氧C6H12O6+6O2→6CO2+6H2O+2817.3kJ无氧呼吸无机物C6H12C6+4NO3-→6CO2+6H2O+2N2↑+1755.6kJ发酵能量利用率26%有机物C6H12C6→2CO2+2CH3CH2OH+92.0kJ20第三节微生物的生长规律和生长环境(因子)211.微生物的生长规律微生物的生长规律一般是以生长曲线来反映。按微生物生长速率,其生长可分为四个生长期延迟期(适应期)对数增长期(旺盛期)稳定期(减速增长期)衰亡期(内源呼吸期)22如果活性污泥被接种到与原来生长条件不同的废水中(营养类型发生变化,污泥培养驯化阶段),或污水处理厂因故中断运行后再运行,则可能出现停滞。这种情况下,污泥需经过若干时间的停滞后才能适应新的废水,或从衰老状态恢复到正常状态。延迟期是否存在或延迟期的长短,与接种活性污泥的数量、废水性质、生长条件等因素有关。当废水中有机物浓度高,且培养条件适宜,则活性污泥可能处在对数生长期。处于对数生长期的污泥絮凝性较差,呈分散状态,镜检能看到较多的游离细菌,混合液沉淀后其上层液混浊,含有机物浓度较高,活性强沉淀不易,用滤纸过滤时,滤速很慢。延迟期对数增长期23当污水中有机物浓度较低,污泥浓度较高时,污泥则有可能处于减速增长,处于稳定期的活性污泥絮凝性好,混合液沉淀后上层液清澈,以滤纸过滤时滤速快。处理效果好的活性污泥法构筑物中,污泥处于稳定期。当污水中有机物浓度较低,营养物明显不足时,则可能出现衰亡期。处于衰亡期的污泥松散,沉降性能好,混合液沉淀后上清液清澈,但有细小泥花,以滤纸过滤时,滤速快稳定期衰亡期24微生物要求的营养物质必须包括组成细胞的各种原料和产生能量的物质,主要有:水、碳素营养源、氮素营养源、无机盐及生长因素。2.微生物的生长环境影响微生物生长的环境因素微生物的营养温度pH溶解氧有毒物质25微生物的组成微生物组成水80%干物质20%无机质10%有机物90%C53.1%,O28.3%,N12.4%,H6.2%P50%,S15%,Na11%,Ca9%,Mg8%,K6%,Fe1%等细胞分子式:C5H7O2N(有机部分)细胞分子式:C60H87O23N12P(考虑磷)一般估算营养比例:BOD∶N∶P=100∶5∶126(1)水:组成部分,代谢过程的溶剂。细菌约80%的成分为水分。(2)碳源:碳素含量占细胞干物质的50%左右,碳源主要构成微生物细胞的含碳物质和供给微生物生长、繁殖和运动所需要的能量,一般污水中含有足够碳源。(3)氮源:提供微生物合成细胞蛋白质的物质。(4)无机元素:主要有磷、硫、钾、钙、镁等及微量元素。作用:构成细胞成分,酶的组成成分,维持酶的活性,调节渗透压,提供自养型微生物的能源。磷:核酸、磷脂、ATP转化。硫:蛋白质组成部分,好氧硫细菌能源。钾:激活酶。钙:稳定细胞壁,激活酶。镁:激活酶,叶绿素的重要组成部分(5)生长因素:氨基酸、蛋白质、维生素等。微生物的营养27各类微生物所生长的温度范围不同,约为5℃~80℃。此温度范围,可分为最低、最高和最适生长温度(是指微生物生长速度最快时温度)。依微生物适应的温度范围,微生物可以分为中温性(20~45℃)、好热性(高温性)(45℃以上)和好冷性(低温性)(20℃以下)三类。当温度超过最高生长温度时,会使微生物的蛋白质迅速变性及酶系统遭到破坏而失活,严重者可使微生物死亡。低温会使微生物代谢活力降低,进而处于生长繁殖停止状态,但仍保存其生命力。微生物的生长环境影响微生物生长的环境因素微生物的营养温度pH溶解氧有毒物质28不同的微生物有不同的pH适应范围。细菌、放线菌、藻类和原生动物的pH适应范围是在4~10之间。大多数细菌适宜中性和偏碱性(pH=6.5~7.5)的环境。废水生物处理过程中应保持最适pH范围。当废水的pH变化较大时,应设置调节池,使进入反应器(如曝气池)的废水,保持在合适的pH范围。微生物的生长环境影响微生物生长的环境因素微生物的营养温度pH溶解氧有毒物质29微生物的生长环境影响微生物生长的环境因素溶解氧是影响生物处理效果的重要因素。好氧微生物处理的溶解氧一般以2~4mg/L为宜。微生物的营养温度pH溶解氧有毒物质30微生物的生长环境影响微生物生长的环境因素在工业废水中,有时存在着对微生物具有抑制和杀害作用的化学物质。其毒害作用主要表现在细胞的正常结构遭到破坏以及菌体内的酶变质,并失去活性。在废水生物处理时,对这些有毒物质应严加控制,但毒物浓度的允许范围,需要具体分析。微生物的营养温度pH值溶解氧有毒物质31活性污泥法一、活性污泥法起源1.1活性污泥法背景18世纪60年代欧洲工业革命,工业和城市化快速发展,大量的工业废水、生活污水未经处理直接排入水体,成为当时污染最为严重的地区。图11858年,伦敦发生“大恶臭(TheGreatStink)”事件1.2活性污泥法起源大事记1865年,英国成立河流污染皇家委员会1898年,成立污水处理皇家委员会,是污水处理技术发展的里程碑事件1908年,污水处理皇家委员会提出著名的“30:20(SS:30mg/L、BOD:20mg/L)+完全硝化”出水标准,1

1 / 162
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功