优质文档芬顿反应

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

[优质文档]芬顿反应Fenton试剂的发展及在废水处理中的应用0.概述1894年,法国人H,J,HFenton发现采用Fe2++H2O2体系能氧化多种有机物。后人为纪念他将亚铁盐和过氧化氢的组合称为Fenton试剂,它能有效氧化去除传统废水处理技术无法去除的难降解有机物,其实质是H2O2在Fe2+的催化作用下生成具有高反应活性的羟基自由(•OH)。•OH可与大多数有机物作用使其降解。随着研究的深入,又把紫外光(UV)、草酸盐(C2O42-)等引入Fenton试剂中,使其氧化能力大大增强。从广义上说,Fenton法是利用催化剂、或光辐射、或电化学作用,通过H2O2产生羟基自由基(•OH)处理有机物的技术。近年来,越来越多的研究者把Fenton试剂同别的处理方法结合起来,如生物处理法、超声波法、混凝法、沉淀法,活性炭法等,从发展历程来看,Fenton法基本上是沿着光化学,电化学和其它方法联用三条路线向前发展的。1.标准Fenton法Fenton试剂的实质是二价铁离子(Fe2+)和过氧化氢之间的链反应催化生成OH自由基,具有较强的氧化能力,其氧化电位仅次于氟,高达2.80V,另外,羟基自由基具有很高的电负性或亲电性,其电子亲和能力达569.3kJ具有很强的加成反应特性,因而Fenton试剂可无选择氧化水中的大多数有机物,特别适用于生物难降解或一般化学氧化难以凑效的有机废水的氧化处理,Fenton试剂在处理有机废水时会发生反应产生铁水络合物,主要反应式如下[1]:[Fe(H2O)6]3++H2O?[Fe(H2O)5OH]2++H3O+[Fe(H2O)5OH]2++H2O?[Fe(H2O)4(OH)2]+H3O+当pH为3~7时,上述络合物变成:2[Fe(H2O)5OH]2+?[Fe(H2O)8(OH)2]4++2H2O[Fe(H2O)8(OH)2]4++H2O?[Fe2(H2O)7(OH)3]3++H3O+[Fe2(H2O)7(OH)3]3++[Fe(H2O)5OH]2+?[Fe3(H2O)7(OH)4]5++5H2O以上反应方程式表达了Fenton试剂所具有的絮凝功能。Fenton试剂所具有的这种絮凝/沉淀功能是Fenton试剂降解CODcr的重要组成部分,可以看出利用Fenton试剂处理废水所取得的处理效果,并不是单纯的因为羟基自由基的作用,这种絮凝/沉降功能同样起到了重要的作用。普通Fenton法在黑暗中就能破坏有机物,具有设备投资省的优点,但其存在两个致命的缺点:一是不能充分矿化有机物,初始物质部分转化为某些中间产物,这些中间产或与Fe3+形成络合物,或与•OH的生成路线发生竞争,并可能对环境造成的更大危害;二是H2O2的利用率不高,致使处理成本很高。可溶性铁,铁的氧化矿物(如赤铁矿,针铁矿等),石墨,铁锰的氧化矿物同样可利用Fe(?)盐溶液,使H2O2催化分解产生•OH,达到降解有机物目的,以这类催化剂组成的Fenton体系,成为类Fenton体系,如用Fe3+代替Fe2+,由于Fe2+是即时产生的,减少了•OH被Fe2+还原的机会,可提高•OH的利用效率。若在Fenton体系中加入某些络合剂(如C2O42-、EDTA等),可增加对有机物的去除率。KuoWG.[2]采用Fenton试剂进行染料的脱色处理,在PH,3.5的条件下,使CODcr的平均去除率达到90,,脱色率达到97,,并指出温度使控制脱色率的主要因素,升高温度有利与脱色率的提高。熊燕萍[3]经过实验发现,Fenton试剂对洋茉莉醛有很好的降解作用,具有反应快、效果明显的优点,能成功地将大分子洋茉莉醛分解韦较小的烷烃分子,且在最佳实验条件下,CODcr的去除率可以达到80,以上。2..Photo-Fenton法2.1UV-Fenton法把光引进Fenton试剂可以克服普通Fenton试剂的缺点,也称为光助Fenton法,UV/Fenton法,并不是普通Fenton与UV/H2O2简单的复合:(1)Fe3+和Fe2+能保持良好的循环反应,提高了传统Fenton试剂的效率;(2)紫外光和Fe2+对H2O2催化分解存在协同效应,这主要是由于铁的某些羟基络合物可发生光敏化反应生成•OH所致;Fe(OH)2+?Fe2++•OH(3)使有机物矿化程度更充分;(4)有机物在紫外线作用下可部分降解;但UV/Fenton法只适宜于处理中低浓度的有机废水,反应装置复杂,处理费用高。2.2UV-vis/H2O2/草酸铁络合物法草酸盐和柠檬酸盐引入Photo-Fenton反应体系,水中,,(?)的草酸盐和柠檬酸盐具有很高的光化学活性,可有效提高Photo-Fenton反应体系对紫外线利用效果和有机物的降解效率。一般说来,pH值在3~4.9时,草酸铁络合物效果好;pH值在4.0~8.0时,Fe(?)柠檬酸盐络合物的效果所以UV-vis草酸铁络合物H2O2法更好。但因前者具有含Fe3+的其他络合物所不具备的光谱特性,具发展前景。UV-vis草酸铁络合物H2O2法与UV/Fenton法相比优越性主要表现在:(1)具有极高的利用紫外线和可见光的能力,可处理高浓度有机废水;(2)羟自由基•OH的产生速率高,节约H2O2用量。但依然存在对可见光的利用能力不是很强,草酸铁络合Fe(C2O4)33-可生成CO2,CO2转化成对•OH有清除作用的CO32-和HCO3-等弱点。杨文忠等[4]使用UV/Fenton法处理难降解的硝基苯废水(CODcr1134mg/L),当Fe2+1000mg/L,H2O2(30%)量取相当于原水CODcr值的1倍,反应后将其pH调至9左右,能在短时间内去除大部分CODcr。雷乐成[5]采用光助Fenton法处理纺织印染PVA退浆废水,在Fenton反应体系中辅以紫外和可见光辐射,其氧化效率有极大地提高。在低浓度亚铁离子、理论双氧水加入量、中压紫外和可见光汞灯的辐射条件下,反应0.5h,溶解性有机碳去除率高达90%。李太友等以400W高压汞灯为紫外光源,6,以H2O2/草酸铁络合物为光氧化剂对氯仿水溶液进行光降解实验研究,结果表明UV/H2O2草酸铁络合物法可迅速使氯仿光解脱氯,氯仿在该体系中的降解速率明显快于在UV/H2O2/TiO2和H2O2,草酸铁络合物体系中的降解速率。黄君礼等,7,用UV/Fe(C2O4)3-3/H2O2法成功地降解了水中的苯胺并确定了最佳反应条件:苯胺浓度为30---40,,,,时,最佳条件为pH值为:3.0---4.0Fe2+为:,mmol,L,H2O2为:13.8mmol/L。(C2O4)3-浓度:20mmol,,反应10min时,苯胺去除率达99%以上,而用Fenton法苯胺去除率为94.6%,UV/Fe(C2O4)3-法苯胺去除率为79.9%.3.电-Fenton该法综合了电化学过程和Fenton氧化过程,充分利用了二者的氧化能力。电Fenton技术相对与传统Fenton具有如下优点[8]:(1)自动产生H2O2的机制较完善;(2)喷洒在阴极上的氧气或空气可提高反应溶液的混和作用;(3)Fe2+可由阴极再生,污泥常量少;(4)有机物降解因素多,羟基自由基•OH的间接氧化,阳极的直接氧化,电混凝和电絮凝。电Fenton法可以分为以下几种:3.1阴电极法即EF-H2O2法,此法是把氧气喷到电解池的阴极上还原为H2O2,H2O2与加入的Fe2+发生反应,体系中的氧气可以通过曝气或H2O在阳极的氧化产生,阴电极法具有有机物降解彻底,不易产生中间毒害物,不用投加H2O2,能够有效的再生亚铁离子等特点,但其反应要求较高的酸度,同时由于目前所用阴极材料的限制,在酸性条件下产生的电流小,不适合处理高浓度污水。3.2阳电极法即EF-Feox法,又称牺牲阳极法,通过阳极氧化产生的Fe2+与加入的H2O2进行Fenton反应。由阳极溶解出的Fe2+和Fe3+可水解成Fe(OH)2和Fe(OH)3,对水中的有机物具有很强的混凝作用,可以实时的控制H2O2和Fe2+的配比,从而达到较高的反应速率,其去除效果好于阴电极法,但需外加H2O2,能耗较大,成本高。3.3FSR法即Fenton污泥循环系统,又称Fe3+循环法。该系统包括一个Fenton反应器和一个将Fe(OH)3转化成Fe2+的电池,可以加速Fe3+向Fe2+的转化,提高•OH产率,过量铁离子进行混凝沉淀,但pH必须小于1。3.4EF-Fere法是FSR法的改进,去掉了Fenton反应器,直接在电池装置中发生Fenton反应,其pH操作范围(小于2.5)和电流效率均大于FSR法。3.5电/光/Fenton法,即UV,CF/EF中,目前UV/Fenton法广泛应用于有机废水的处理,电和UV同时与Fenton试剂相作用可以同时产生Fe2+和OH-,提高难降解有机物的去除律和Fe2+的再生,但存在UV光源的穿透率低,光源装置易污染等缺点。ZuchengWu[9]等以氟化树脂修饰的β,PbO2、陶瓷作阳极Ni,Cr,Ti合金作阴极,研究表明空气流量、Fe2+浓度、电流密度对苯酚的降解都有很大的影响。在最佳的实验条件下苯酚的去除率可达100,。HsiaoY等[10]用流化床电解器(通过其Pt阳极上产生的Fe3+、O2可在RVC阴极上被还原而生成H2O2、Fe2+)处理了含氯苯和酚的废水,该系统无需在阴极上喷射O2,降低了处理成本。陈卫国,11,等用电催化法处理了苯酚、苯胺、邻苯二甲酸二甲脂废水,证实了在电催化过程中活性物种H2O2和•OH的存在,有机物的去除率关键在于体系中产生活性物种的量,H2O2的产量受到槽电压和pH值等因素的影响,碱性条件下更有利于H2O2的生成。陈震等,12,用多孔石墨作阴极金属铁作阳极以Na2SO4为支持电解质对酸性铬蓝模拟水样进行降解CODcr去除率大于80,脱色率达100,。HsiaoY等[13]用EF-Fenton法对氯苯和酚进行处理,其氧化去除率明显高于普通Fenton法。HuangYaohui等[14]用EF-Feox法处理了石油化工(含六胺)废水,CODcr去除率大于80%,效果好于普通Fenton法。4.Fenton法和其它方法联合Fenton试剂对难生物降解废水、有毒废水、和生物抑制性废水有着稳定、有效的去除功能,如单独使用则处理费用往往会很高,如果将Fenton氧化或光Fenton氧化技术作为难降解有机废水的预处理或深度处理方法,再与其他处理方法(如生物法、混凝法等)联用,则可以降低废水处理成本,提高处理效率。目前,以Fenton氧化处理为基础的联用技术已逐渐成为研究推广的热点之一。但目前的实验研究主要集中在系统的积极效应(如生化性提高、抑制性降低等方面)和后续处理的影响。但较少对整个系统的综合效应进行研究,并对整个系统进行模拟。4.1Fenton试剂+生物法目前Fenton试剂最常用的是与生物处理方法联用,Fenton试剂和生化法联合处理主要适用于以下四种类型的废水[15](1)难生物降解废水;(2)含有少量难生物降解有机物可生化废水;(3)抑制性废水;(4)污染物的生物降解中间产物具有抑制性废水。JapanKokai[16]用H2O2+Fe2++曝气系统对甘醇废水进行预处理,然后在进行活性污泥法可除去99,的CODcr。王鹏[17]等在垃圾渗沥液中难降解有机污染物的Fenton混凝处理中针对香港卫生填埋厂垃圾渗沥水提出了化学法与厌氧生物法结合的废水处理工艺。垃圾渗沥水通过UASB反应器,UASB出水采用Fenton化学混凝工艺进行深度处理,对Fenton混凝过程的深入研究结果表明,在约有70%的残留在UASB出水中的CODcr物质去除中,其中56%的CODcr去除是借助化学混凝沉淀作用,另外14%是由该过程产生的羟基自由基氧化去除;4.2Fenton+超声波超声化学的主要作用原理是超声作用下液体的声空化即液体中的气泡在超声作用下在极短的时间内崩溃,在空化泡崩溃的瞬间,会在其周围极小空间范围内产生出高温和高压,高温度变化率,并伴有强烈的冲击波和时速高达400

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功