第22章膜法水处理技术电渗析法膜分离发展过程和趋势可用?高增长低增长透析微滤超滤反渗透电渗析控制释放气体分离渗透汽化双极膜液膜膜反应器闸膜活化传递微滤0.1~10m:细菌、煤灰、发酵细胞、颜料、蛋白等超滤0.005~0.1m:蛋白、颜料、多糖、大分子纳滤0.0005~0.005m:低聚糖、染料、多价离子反渗透0.0001~0.001m:电解质、大于100Da的有机溶质水、小于100Da的有机溶质膜的适用范围膜料液水小分子大分子渗透液定义:具有选择性分离的功能薄膜材料。“21世纪的多数工业中,膜技术扮演着战略的角色”“谁掌握了膜技术,谁就掌握了21世纪的未来”膜的简介一膜分离概况膜分离法实际上是一般过滤法的发展和延续。一般过滤法不是分子级水平的,它是利用相的不同将固体从液体或气体中分离出来;而膜分离是分子级水平的分离方法,该法关键在于过程中使用的过滤介质:膜。1膜分离原理膜分离过程原理:以选择性透膜为分离介质,通过在膜两边施加一个推动力(如浓度差、压力差或电位差等)时,使原料侧组分选择性地透过膜,以达到分离提纯的目的。通常膜原料侧称为膜上游,透过侧称为膜下游。膜上游透膜膜下游选择性透膜分离膜种类分离膜高分子膜液体膜生物膜带电膜非带电膜阳离子膜阴离子膜过滤膜精密过滤膜超滤膜反渗透膜纳米滤膜高分子膜的分离功能很早就已发现。1748年,耐克特(A.Nelkt)发现水能自动地扩散到装有酒精的猪膀胱内,开创了膜渗透的研究。2膜分离技术发展简史1861年,施密特(A.Schmidt)首先提出了超过滤的概念。他提出,用比滤纸孔径更小的棉胶膜或赛璐酚膜过滤时,若在溶液侧施加压力,使膜的两侧产生压力差,即可分离溶液中的细菌、蛋白质、胶体等微小粒子,其精度比滤纸高得多。这种过滤可称为超过滤。按现代观点看,这种过滤应称为微孔过滤。然而,真正意义上的分离膜出现在20世纪60年代。1961年,米切利斯(A.S.Michealis)等人用各种比例的酸性和碱性的高分子电介质混合物以水—丙酮—溴化钠为溶剂,制成了可截留不同分子量的膜,这种膜是真正的超过滤膜。美国Amicon公司首先将这种膜商品化。50年代初,为从海水或苦咸水中获取淡水,开始了反渗透膜的研究。1967年,DuPont公司研制成功了以尼龙—66为主要组分的中空纤维反渗透膜组件。同一时期,丹麦DDS公司研制成功平板式反渗透膜组件。反渗透膜开始工业化。自上世纪60年代中期以来,膜分离技术真正实现了工业化。首先出现的分离膜是超过滤膜(简称UF膜)、微孔过滤膜(简称MF膜)和反渗透膜(简称RO膜)。以后又开发了许多其它类型的分离膜。在此期间,除上述三大膜外,其他类型的膜也获得很大的发展。80年代气体分离膜的研制成功,使功能膜的地位又得到了进—步提高。具有分离选择性的人造液膜是马丁(Martin)在60年代初研究反渗透时发现的,这种液膜是覆盖在固体膜之上的,为支撑液膜。60年代中期,美籍华人黎念之博士发现含有表面活性剂的水和油能形成界面膜,从而发明了不带有固体膜支撑的新型液膜,并于1968年获得纯粹液膜的第一项专利。70年代初,卡斯勒(Cussler)又研制成功含流动载体的液膜,使液膜分离技术具有更高的选择性。膜过程国家年代应用微滤超滤血液渗析电渗析反渗透超滤气体分离膜蒸馏全蒸发德国德国荷兰美国美国美国美国德国德国/荷兰192019301950195519601960197919811982实验室用(细菌过滤器)实验室用人工肾脱盐海水脱盐大分子物质浓缩氢回收水溶液浓缩有机溶液脱水/荷兰193019501955196019601979198膜的发展历史3膜的分类1.按膜的材料分类表1膜材料的分类类别膜材料举例纤维素酯类纤维素衍生物类醋酸纤维素,硝酸纤维素,乙基纤维素等非纤维素酯类聚砜类聚砜,聚醚砜,聚芳醚砜,磺化聚砜等聚酰(亚)胺类聚砜酰胺,芳香族聚酰胺,含氟聚酰亚胺等聚酯、烯烃类涤纶,聚碳酸酯,聚乙烯,聚丙烯腈等含氟(硅)类聚四氟乙烯,聚偏氟乙烯,聚二甲基硅氧烷等其他壳聚糖,聚电解质等2.按膜的分离原理及适用范围分类根据分离膜的分离原理和推动力的不同,可将其分为微孔膜、超过滤膜、反渗透膜、纳滤膜、渗析膜、电渗析膜、渗透蒸发膜等。3.按膜的形态分类按膜的形状分为平板膜(FlatMembrane)、管式膜(TubularMembrane)和中空纤维膜(HollowFiber)。分离范围umARELATIVESIZEOFCOMMONMATERIAL过滤对象MOLECULARWEIGHT分子量0.001100.011000.110001.01041010510010001061071002005,00020,000150,000500,000Aqueoussalts中水盐份Metalions金属离子Sugars蔗糖FILTRATIONTECHNO-LOGY过滤方法Pyrogens热源Virus病毒Colloidalsilica胶体硅Albuminprotein白蛋白Bacteria细菌Carbonblack碳黑Paintpigment颜料色素Yeastcells酵母Milledflour面粉Beachsand海滩沙砾Pollens花粉RO反渗透Ultrafiltration超滤Microfiltration微滤Particlefiltration一般过滤THEFILTRATIONSPECTRUM过滤谱图NF纳滤4.按膜的结构分类按膜的结构分为:对称膜(SymmetricMembrane)非对称膜(AsymmetricMembrane)复合膜(CompositeMembrane)几种主要分离膜的分离过程膜过程推动力传递机理透过物截留物膜类型微滤压力差颗粒大小形状水、溶剂溶解物悬浮物颗粒纤维多孔膜超滤压力差分子特性大小形状水、溶剂小分子胶体和超过截留分子量的分子非对称性膜纳滤压力差离子大小及电荷水、一价离子、多价离子有机物复合膜反渗透压力差溶剂的扩散传递水、溶剂溶质、盐非对称性膜复合膜渗析浓度差溶质的扩散传递低分子量物、离子溶剂非对称性膜电渗析电位差电解质离子的选择传递电解质离子非电解质,大分子物质离子交换膜气体分离压力差气体和蒸汽的扩散渗透气体或蒸汽难渗透性气体或蒸汽均相膜、复合膜,非对称膜渗透蒸发压力差选择传递易渗溶质或溶剂难渗透性溶质或溶剂均相膜、复合膜,非对称膜液膜分离浓度差反应促进和扩散传递杂质溶剂乳状液膜、支撑液膜4膜材料用作分离膜的材料包括广泛的天然的和人工合成的有机高分子材料和无机材料。原则上讲,凡能成膜的高分子材料和无机材料均可用于制备分离膜。但实际上,真正成为工业化膜的膜材料并不多。这主要决定于膜的一些特定要求,如分离效率、分离速度等。此外,也取决于膜的制备技术。目前,实用的有机高分子膜材料有:纤维素酯类、聚砜类、聚酰胺类及其他材料。从品种来说,已有成百种以上的膜被制备出来,其中约40多种已被用于工业和实验室中。以日本为例,纤维素酯类膜占53%,聚砜膜占33.3%,聚酰胺膜占11.7%,其他材料的膜占2%,可见纤维素酯类材料在膜材料中占主要地位。醋酸纤维素是当今最重要的膜材料之一。醋酸纤维素性能稳定,但在高温和酸、碱存在下易发生水解。纤维素醋类材料易受微生物侵蚀,pH值适应范围较窄,不耐高温和某些有机溶剂或无机溶剂。因此发展了非纤维素酯类(合成高分子类)膜。醋酸纤维素膜的结构示意图99%表皮层,孔径(8-10)×10-10m过渡层,孔径200×10-10m多孔层,孔径(1000-4000)×10-10m1%显微镜下膜的照片常用于制备分离膜的合成高分子材料有聚砜、聚酰胺、芳香杂环聚合物和离子聚合物等。非纤维素酯类膜材料聚砜类树脂具有良好的化学、热学和水解稳定性,强度也很高,pH值适应范围为1~13,最高使用温度达120℃,抗氧化性和抗氯性都十分优良。因此已成为重要的膜材料之一。早期使用的聚酰胺是脂肪族聚酰胺,如尼龙—4、尼龙—66等制成的中空纤维膜。这类产品对盐水的分离率在80%~90%之间,但透水率很低,仅0.076ml/cm2·h。以后发展了芳香族聚酰胺,用它们制成的分离膜,pH适用范围为3~11,分离率可达99.5%(对盐水),透水速率为0.6ml/cm2·h。长期使用稳定性好。由于酰胺基团易与氯反应,故这种膜对水中的游离氯有较高要求。常见材料的最高允许使用温度名称温度CA聚酰胺聚苯并咪唑聚苯并咪唑酮磺化聚苯醚磺化聚砜聚醚砜酮3535907070120160二、离子交换膜及其作用机理1,离子交换膜离子交换膜是电渗析器的重要组成部分,按其选择透过性能,主要分为阳膜与阴膜、按其膜体结构,可区分为异相膜、均相膜、半均相膜3种。异相膜的优点是机械强度好、价格低,缺点是膜电阻大、耐热差、透水性大。均相膜则相反。异相模通常是具有交换基团的聚合电解质(树脂)与成膜材料(粘合剂)粘合生成薄膜,井加入衬网而制成。这种膜中的聚合电解质并不是连续的,它的化学性能不均匀,如下图所示,在膜和电解质之间为成膜材料所充满,故叫异相膜,膜中离子的迁移或靠聚合电解质颗粒之间的接触,或借颗粒之间存在的溶液,成当两者同时存在时发生。均相膜指整张膜完全是按离子交换树脂的制造工艺制成的,是将树脂的母体连接起来,成为连续的膜状物,在这种膜中聚合电解质和成膜材料之间发生了化学结合而成为共聚体。如下图所示。由于这种膜的化学性能是均匀的,膜的各部分具有相同特性,是单相的,故叫均相膜。半均相膜的聚合电解质与成膜材料混合得十分均匀,它的化学性能的均匀性可以大为提高,但两者之间没有化学结合。(1)选择透过率:离子交换膜的选择透过性实际上并不是那样理想的,因为总是有少量的同号离子(即与膜上的固定活性基电荷符号相同的离子)同时透过。例如,阳膜对阳离子的选择透过性可由如下指标表示:(2)膜电阻:膜电阻与电渗析所需要的电压有密切的关系。电阻越小,所需电压越低。膜电阻一般用膜的电阻率乘以膜的厚度表示,单位为cm2。二、电渗析原理及过程电渗析法:外加直流电场作用下,利用离子交换膜的选择透过性,使水中阴阳离子做定向迁移,从而达到离子从水中分离的一种物理化学过程。以最基本的双膜电渗析槽为例:为降低电极反应在总能量消耗中所占的比例,工业生产中组成多膜电渗析槽,称为电渗析器。在电渗析过程中,电能的消耗主要用来克服电流通过溶液、膜时所受到的阻力以及进行电极反应。运行时,进水分别地不断流经浓室、淡室以及极室。淡室出水即为淡化水,浓室出水即为浓盐水,极室出水不断排除电极过程的反应物质,以保证电渗析的正常进行。电极反应在海水的电渗析淡化过程中,海水中的Cl-、SO42-、HCO3-和OH-透过阴膜向阳极方向迁移,Na+、Mg2+、Ca2+、K+和H+则透过阳膜向阴极方向迁移。同时,在电极表面,发生了电子和离子间的转化,即电极反应。在阳极发生的反应:主反应2Cl-→Cl2↑+2e2H2O→O2↑+4H++4e次级反应Cl2+H2O→HCl+HClO在阴极发生的反应:主反应2H2O+2e→H2↑+2OH-次级反应2OH-+Mg2+→Mg(OH)2↓2OH-+Ca2+→Ca(OH)2↓2OH-+HCO3-+Ca2+→CaCO3+H2O三、电渗析器的构造与组装1、构造2、组装四、电流效率与极限电流密度1.电流效率电渗析器用于水的淡化时,一个淡室(相当于一对膜)实际去除的盐量等于:1000/)(211BtNccqm式中:q—一个淡室的出水量,L/S;c1、c2—分别表示进、出水含盐量,计算时均以当量粒子为基本单元,mmol/L;t—通电时间,s;NB—物质的摩尔质量,以当量粒子为基本单元,g/mol。2,极限电流密度电流密度i:电渗析器运行时,单位面积的膜通过的电流称电流密度。极限电流密度iLim:膜表面发生浓差极化现象时的电流密度称极限电流密度。浓差极化:电渗析器在运转中,膜两边出现浓度差而引起水的离解的膜界面现象称浓差极化。五极化与沉淀极化的危害极化是电渗析器运行中常见问题,其危害如下。(1)降低电流效率由于极化时、导致水