3.4《基本不等式》优质课教案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页共5页3.4《基本不等式》教案赵晓雪1、本节教材的地位和作用“基本不等式”是必修5的重点内容,在课本封面上就体现出来了(展示课本和参考书封面)。它是在学完“不等式的性质”、“不等式的解法”及“线性规划”的基础上对不等式的进一步研究.在不等式的证明和求最值过程中有着广泛的应用。求最值又是高考的热点。同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质。2、教学目标(1)知识目标:探索基本不等式的证明过程;会用基本不等式解决最值问题。(2)能力目标:培养学生观察、试验、归纳、判断、猜想等思维能力。(3)情感目标:培养学生严谨求实的科学态度,体会数与形的和谐统一,领略数学的应用价值,激发学生的学习兴趣和勇于探索的精神。3、教学重点、难点根据课程标准制定如下的教学重点、难点重点:应用数形结合的思想理解不等式,并从不同角度探索基本不等式。难点:基本不等式的内涵及几何意义的挖掘,用基本不等式求最值。二、教法说明本节课借助平板,使用多媒体辅助进行直观演示.采用启发式教学法创设问题情景,激发学生开始尝试活动.运用生活中的实际例子,让学生享受解决实际问题的乐趣.课堂上主要采取对比分析;让学生边议、边评;组织学生学、思、练。通过师生和谐对话,使情感共鸣,让学生的潜能、创造性最大限度发挥,使第2页共5页认知效益最大。让学生爱学、乐学、会学、学会。三、教学设计◆运用2002年国际数学家大会会标引入◆运用分析法证明基本不等式◆不等式的几何解释◆基本不等式的应用1、运用2002年国际数学家大会会标引入如图,这是在北京召开的第24届国际数学家大会会标.会标根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。(展示风车)正方形ABCD中,AE⊥BE,BF⊥CF,CG⊥DG,DH⊥AH,设AE=a,BE=b,则正方形的面积为S=__,Rt△ABE,Rt△BCF,Rt△CDG,Rt△ADH是全等三角形,它们的面积之和是S’=_从图形中易得,s≥s’,即问题1:它们有相等的情况吗?何时相等?问题2:当a,b为任意实数时,上式还成立吗?(学生积极思考,通过几何画板帮助学生理解)一般地,对于任意实数a、b,我们有当且仅当(重点强调)a=b时,等号成立(合情推理)问题3:你能给出它的证明吗?(让学生独立证明)abCABCEDGFaHb22a+b222abab222abab第3页共5页设计意图(1)运用2002年国际数学家大会会标引入,能让学生进一步体会中国数学的历史悠久,感受数学与生活的联系。(2)运用此图标能较容易的观察出面积之间的关系,引入基本不等式很直观。(3)三个思考题为学生创造情景,逐层深入,强化理解.2、运用分析法证明基本不等式如果a>0,b>0,用a和b分别代替a,b。可以得到也可写成(强调基本不等式成立的前提条件“正”)(演绎推理)问题4:你能用不等式的性质直接推导吗?要证①只要证②要证②,只要证③要证③,只要证④显然,④是成立的.当且仅当a=b时,不等式中的等号成立.(强调基本不等式取等的条件“等”)设计意图(1)证明过程课本上是以填空形式出现的,学生能够独立完成,这也能进一步培养学生的自学能力,符合课改精神;(2)证明过程印证了不等式的正确性,并能加深学生对基本不等式的理解;2(a-b)0a+bab(a0,)b02a+bab2a+b2ab2(a-b)0a+b-2ab0第4页共5页(3)此种证明方法是“分析法”,在选修教材的《推理与证明》一章中会重点讲解,此处有必要让学生初步了解。3、不等式的几何解释如图,AB是圆的直径,C是AB上任一点,AC=a,CB=b,过点C作垂直于AB的弦DE,连AD,BD,则CD=,半径为问题5:你能用这个图得出基本不等式的几何解释吗?(学生积极思考,通过几何画板帮助学生理解)设计意图几何直观能启迪思路,帮助理解,因此,借助几何直观学习和理解数学,是数学学习中的重要方面。只有做到了直观上的理解,才是真正的理解。4、基本不等式的应用例1:(1)如图,用篱笆围成一个面积为100m2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?例2:(2)如图,用一段长为36m的篱笆围成一个矩形菜园,问这个矩形菜园的长和宽各为多少时,菜园的面积最大,最大面积是多少?设计意图(1)这道例题很简单,多数学生都会仿照课本上的分析思路重新证明,能够练习“分析法”证明不等式的过程;(3)此例是课本例题,这样,循序渐进,有利于学生理解不等式的内涵。例3:讨论:BDEAC第5页共5页(让学生分组合作、探究完成)设计意图(1)此题目利用基本不等式求最值,包含正用,逆用,体现了基本不等式的应用价值;(2)强调利用不等式求最值的关键点:“正”“定”“等”;(3)有利于培养学生团结合作的精神。作业:1.教材第100~101页练习1—4习题3.4A组1—4

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功