圆幂定理讲义(带标准答案)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1/27圆幂定理STEP1:进门考理念:1.检测垂径定理的基本知识点与题型。2.垂径定理典型例题的回顾检测。3.分析学生圆部分的薄弱环节。(1)例题复习。1.(2015•夏津县一模)一副量角器与一块含30°锐角的三角板如图所示放置,三角板的直角顶点C落在量角器的直径MN上,顶点A,B恰好都落在量角器的圆弧上,且AB∥MN.若AB=8cm,则量角器的直径MN=cm.【考点】M3:垂径定理的应用;KQ:勾股定理;T7:解直角三角形.【分析】作CD⊥AB于点D,取圆心O,连接OA,作OE⊥AB于点E,首先求得CD的长,即OE的长,在直角△AOE中,利用勾股定理求得半径OA的长,则MN即可求解.【解答】解:作CD⊥AB于点D,取圆心O,连接OA,作OE⊥AB于点E.在直角△ABC中,∠A=30°,则BC=AB=4cm,在直角△BCD中,∠B=90°﹣∠A=60°,∴CD=BC•sinB=4×=2(cm),∴OE=CD=2,在△AOE中,AE=AB=4cm,则OA===2(cm),则MN=2OA=4(cm).故答案是:4.2/27【点评】本题考查了垂径定理的应用,在半径或直径、弦长以及弦心距之间的计算中,常用的方法是转化为解直角三角形.2.(2017•阿坝州)如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cmB.cmC.2cmD.2cm【考点】M2:垂径定理;PB:翻折变换(折叠问题).【分析】通过作辅助线,过点O作OD⊥AB交AB于点D,根据折叠的性质可知OA=2OD,根据勾股定理可将AD的长求出,通过垂径定理可求出AB的长.【解答】解:过点O作OD⊥AB交AB于点D,连接OA,∵OA=2OD=2cm,∴AD===(cm),∵OD⊥AB,∴AB=2AD=2cm.故选:D.【点评】本题考查了垂径定理和勾股定理的运用,正确应用勾股定理是解题关键.3.(2014•泸州)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()3/27A.4B.C.D.【考点】M2:垂径定理;F8:一次函数图象上点的坐标特征;KQ:勾股定理.【专题】11:计算题;16:压轴题.【分析】PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,由于OC=3,PC=a,易得D点坐标为(3,3),则△OCD为等腰直角三角形,△PED也为等腰直角三角形.由PE⊥AB,根据垂径定理得AE=BE=AB=2,在Rt△PBE中,利用勾股定理可计算出PE=1,则PD=PE=,所以a=3+.【解答】解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选:B.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.4/274.(2013•内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为.【考点】FI:一次函数综合题.【专题】16:压轴题.【分析】根据直线y=kx﹣3k+4必过点D(3,4),求出最短的弦CB是过点D且与该圆直径垂直的弦,再求出OD的长,再根据以原点O为圆心的圆过点A(13,0),求出OB的长,再利用勾股定理求出BD,即可得出答案.【解答】解:∵直线y=kx﹣3k+4=k(x﹣3)+4,∴k(x﹣3)=y﹣4,∵k有无数个值,∴x﹣3=0,y﹣4=0,解得x=3,y=4,∴直线必过点D(3,4),∴最短的弦CB是过点D且与该圆直径垂直的弦,∵点D的坐标是(3,4),∴OD=5,∵以原点O为圆心的圆过点A(13,0),∴圆的半径为13,∴OB=13,∴BD=12,∴BC的长的最小值为24;故答案为:24.【点评】此题考查了一次函数的综合,用到的知识点是垂径定理、勾股定理、圆的有关性质,关键是求出BC最短时的位置.STEP2:新课讲解1、熟练掌握圆幂定理的基本概念。2、熟悉有关圆幂定理的相关题型,出题形式与解题思路。3、能够用自己的话叙述圆幂定理的概念。4、通过课上例题,结合课下练习。掌握此部分的知识。一、相交弦定理5/27基本题型:【例1】(2014秋•江阴市期中)如图,⊙O的弦AB、CD相交于点P,若AP=3,BP=4,CP=2,则CD长为()A.6B.12C.8D.不能确定【考点】M7:相交弦定理.【专题】11:计算题.【分析】由相交线定理可得出AP•BP=CP•DP,再根据AP=3,BP=4,CP=2,可得出PD的长,从而得出CD即可.【解答】解:∵AP•BP=CP•DP,∴PD=,∵AP=3,BP=4,CP=2,∴PD=6,∴CD=PC+PD=2+6=8.故选C.【点评】本题考查了相交线定理,圆内两条弦相交,被交点分成的两条线段的积相等.相交弦定理(1)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.(经过圆内一点引两条线,各弦被这点所分成的两段的积相等).几何语言:若弦AB、CD交于点P,则PA•PB=PC•PD(相交弦定理)(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.几何语言:若AB是直径,CD垂直AB于点P,则PC2=PA•PB(相交弦定理推论).6/27【练习1】(2015•南长区一模)如图,矩形ABCD为⊙O的内接四边形,AB=2,BC=3,点E为BC上一点,且BE=1,延长AE交⊙O于点F,则线段AF的长为()A.B.5C.+1D.【考点】M7:相交弦定理.【分析】由矩形的性质和勾股定理求出AE,再由相交弦定理求出EF,即可得出AF的长.【解答】解:∵四边形ABCD是矩形,∴∠B=90°,∴AE===,∵BC=3,BE=1,∴CE=2,由相交弦定理得:AE•EF=BE•CE,∴EF==,∴AF=AE+EF=;故选:A.【点评】本题考查了矩形的性质、勾股定理、相交弦定理;熟练掌握矩形的性质和相交弦定理,并能进行推理计算是解决问题的关键.综合题型【例2】(2004•福州)如图,AB是⊙O的直径,M是⊙O上一点,MN⊥AB,垂足为N.P、Q分别是、上一点(不与端点重合),如果∠MNP=∠MNQ,下面结论:①∠1=∠2;②∠P+∠Q=180°;③∠Q=∠PMN;④PM=QM;⑤MN2=PN•QN.其中正确的是()7/27A.①②③B.①③⑤C.④⑤D.①②⑤【考点】M7:相交弦定理;M2:垂径定理;M4:圆心角、弧、弦的关系;M5:圆周角定理;S9:相似三角形的判定与性质.【专题】16:压轴题.【分析】根据圆周角定理及已知对各个结论进行分析,从而得到答案.【解答】解:延长MN交圆于点W,延长QN交圆于点E,延长PN交圆于点F,连接PE,QF∵∠PNM=∠QNM,MN⊥AB,∴∠1=∠2(故①正确),∵∠2与∠ANE是对顶角,∴∠1=∠ANE,∵AB是直径,∴可得PN=EN,同理NQ=NF,∵点N是MW的中点,MN•NW=MN2=PN•NF=EN•NQ=PN•QN(故⑤正确),∴MN:NQ=PN:MN,∵∠PNM=∠QNM,∴△NPM∽△NMQ,∴∠Q=∠PMN(故③正确).故选B.8/27【点评】本题利用了相交弦定理,相似三角形的判定和性质,垂径定理求解.与代数结合的综合题【例3】(2016•中山市模拟)如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.【考点】M7:相交弦定理;KQ:勾股定理.【专题】11:计算题.【分析】设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.利用相交弦定理,求出m与r的关系,即用r表示出m,即可表示出所求比值.【解答】解:如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.在⊙O中,根据相交弦定理,得QA•QC=QP•QD.即(r﹣m)(r+m)=m•QD,所以QD=.连接DO,由勾股定理,得QD2=DO2+QO2,即,9/27解得所以,故选D.【点评】本题考查了相交弦定理,即“圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等”.熟记并灵活应用定理是解题的关键.需要做辅助线的综合题【例4】(2008秋•苏州期末)如图,⊙O过M点,⊙M交⊙O于A,延长⊙O的直径AB交⊙M于C,若AB=8,BC=1,则AM=.【考点】M7:相交弦定理;KQ:勾股定理;M5:圆周角定理.【分析】根据相交弦定理可证AB•BC=EB•BF=(EM+MB)(MF﹣MB)=AM2﹣MB2=8,又由直径对的圆周角是直角,用勾股定理即可求解AM=6.【解答】解:作过点M、B的直径EF,交圆于点E、F,则EM=MA=MF,由相交弦定理知,AB•BC=EB•BF=(EM+MB)(MF﹣MB)=AM2﹣MB2=8,∵AB是圆O的直径,∴∠AMB=90°,由勾股定理得,AM2+MB2=AB2=64,∴AM=6.10/27【点评】本题利用了相交弦定理,直径对的圆周角是直角,勾股定理求解.二、割线定理基本题型【例5】(1998•绍兴)如图,过点P作⊙O的两条割线分别交⊙O于点A、B和点C、D,已知PA=3,AB=PC=2,则PD的长是()A.3B.7.5C.5D.5.5【考点】MH:切割线定理.【分析】由已知可得PB的长,再根据割线定理得PA•PB=PC•PD即可求得PD的长.【解答】解:∵PA=3,AB=PC=2,∴PB=5,割线定理割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.几何语言:∵PBA,PDC是⊙O的割线∴PD•PC=PA•PB(割线定理)由上可知:PT2=PA•PB=PC•PD.11/27∵PA•PB=PC•PD,∴PD=7.5,故选B.【点评】主要是考查了割线定理的运用.【练习2】(2003•天津)如图,Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心、CA为半径的圆与AB、BC分别交于点D、E.求AB、AD的长.【考点】MH:切割线定理;KQ:勾股定理.【分析】Rt△ABC中,由勾股定理可直接求得AB的长;延长BC交⊙C于点F,根据割线定理,得BE•BF=BD•BA,由此可求出BD的长,进而可求得AD的长.【解答】解:法1:在Rt△ABC中,AC=3,BC=4;根据勾股定理,得AB=5.延长BC交⊙C于点F,则有:EC=CF=AC=3(⊙C的半径),BE=BC﹣EC=1,BF=BC+CF=7;由割线定理得,BE•BF=BD•BA,于是BD=;所以AD=AB﹣BD=;法2:过C作CM⊥AB,交AB于点M,如图所示,12/27由垂径定理可得M为AD的中点,∵S△ABC=AC•BC=AB•CM,且AC=3,BC=4,AB=5,∴CM=,在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+()2,解得:AM=,∴AD=2AM=.【点评】此题主要考查学生对勾股定理及割线定理的理解及运用.综合题型【例6】(2015•武汉校级模拟)如图,两同心圆间的圆环的面积为16π,过小圆上任意一点P作大圆的弦AB,则PA•PB的值是()A.16B.16πC.4D.4π13/27【考点】MH:切割线定理.【分析】过P点作大圆的直径CD,如图,设大圆半径为R,小圆半径为r,根据相交弦定理得到PA•PB=(OC﹣OP)•(OP+OD)=R2﹣r2,再利用πR2﹣πr2=16π得到R2﹣r2=16,所以PA•PB=16.【解答】解:过P点作大圆的直径CD,如图,设大圆半径为R,小圆半径为r,∵PA•PB=PC•PD,∴PA•PB=(OC﹣OP)•(OP+OD)=(R﹣

1 / 27
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功