高中物理动量大题(含答案)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页(共7页)高中物理动量大题与解析1.(2017•平顶山模拟)如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg,AO部分粗糙且长L=2m,动摩擦因数μ=0.3,OB部分光滑.另一小物块a.放在车的最左端,和车一起以v0=4m/s的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a、b两物块视为质点质量均为m=1kg,碰撞时间极短且不粘连,碰后一起向右运动.(取g=10m/s2)求:(1)物块a与b碰后的速度大小;(2)当物块a相对小车静止时小车右端B到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.解:(1)对物块a,由动能定理得:,代入数据解得a与b碰前速度:v1=2m/s;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:mv1=2mv2,代入数据解得:v2=1m/s;(2)当弹簧恢复到原长时两物块分离,a以v2=1m/s在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:mv2=(M+m)v3,代入数据解得:v3=0.25m/s,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:=0.03125m;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;答:(1))物块a与b碰后的速度大小为1m/s;(2)当物块a相对小车静止时小车右端B到挡板的距离为0.03125m(3)当物块a相对小车静止时在小车上的位置到O点的距离为0.125m.第2页(共7页)2.(2017•肇庆二模)如图所示,在光滑的水平面上有一长为L的木板B,上表面粗糙,在其左端有一光滑的圆弧槽C,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B、C静止在水平面上.现有滑块A以初速V0从右端滑上B,并以V0滑离B,恰好能到达C的最高点.A、B、C的质量均为m,试求:(1)木板B上表面的动摩擦因素μ;(2)圆弧槽C的半径R;(3)当A滑离C时,C的速度.解:(1)当A在B上滑动时,A与BC整体发生作用,规定向左为正方向,由于水平面光滑,A与BC组成的系统动量守恒,有:mv0=m×v0+2mv1得:v1=v0由能量守恒得知系统动能的减小量等于滑动过程中产生的内能,有:Q=μmgL=m﹣m﹣×2m得:μ=(2)当A滑上C,B与C分离,A与C发生作用,设到达最高点时速度相等为V2,规定向左为正方向,由于水平面光滑,A与C组成的系统动量守恒,有:m×v0+mv1=(m+m)V2,得:V2=A与C组成的系统机械能守恒,有:m+m=×(2m)+mgR得:R=(3)当A滑下C时,设A的速度为VA,C的速度为VC,规定向左为正方向,A与C组成的系统动量守恒,有:第3页(共7页)m×v0+mv1=mvA+mvCA与C组成的系统动能守恒,有:m+m=m+m解得:VC=.答:(1)木板B上表面的动摩擦因素为;(2)圆弧槽C的半径为;(3)当A滑离C时,C的速度是.3.(2017•惠州模拟)如图所示,一质量M=0.4kg的小物块B在足够长的光滑水平台面上静止不动,其右侧固定有一轻质水平弹簧(处于原长).台面的右边平滑对接有一等高的水平传送带,传送带始终以υ=1m/s的速率逆时针转动.另一质量m=0.1kg的小物块A以速度υ0=4m/s水平滑上传送带的右端.已知物块A与传送带之间的动摩擦因数μ=0.1,传送带左右两端的距离l=3.5m,滑块A、B均视为质点,忽略空气阻力,取g=10m/s2.(1)求物块A第一次到达传送带左端时速度大小;(2)求物块A第一次压缩弹簧过程中弹簧的最大弹性势能Epm;(3)物块A会不会第二次压缩弹簧?解:(1)物块A从传送带的右端滑到左端的过程,根据动能定理有:mυ12﹣mυ02=﹣μmgl代入数据解得:υ1=3m/s因为υ1>υ所以物块A第一次到达传送带左端时速度大小为3m/s.(2)物块A第一次压缩弹簧过程中,当物块A和B的速度相等时,弹簧的弹性势能最大,根据动量守恒定律有:mυ1=(M+m)υ′根据机械能守恒定律有:Epm=mυ12﹣(M+m)υ′2代入数据解得:Epm=0.36J.第4页(共7页)(3)物块A第一次压缩弹簧前后动量和动能均守恒,有:mυ1=mυ1′+Mυ2′mυ12=mυ1′2+Mυ2′2解得:υ1′=υ1=﹣1.8m/s,υ2′=υ1代入数据解得:υ1′=﹣1.8m/s,υ2′=1.2m/s根据动能定理有:0﹣mυ1′2=﹣μmgl1代入数据解得:l1=1.62m因为l1<l所以物块A第二次向左到达传送带左端时的速度υ1″=υ=1m/s根据υ1″<υ2′,可得物块A不会第二次压缩弹簧.答:(1)物块A第一次到达传送带左端时速度大小为3m/s;(2)物块A第一次压缩弹簧过程中弹簧的最大弹性势能Epm为0.36J;(3)物块A不会第二次压缩弹簧.4.(2017•盐城一模)历史上美国宇航局曾经完成了用“深度撞击”号探测器释放的撞击器“击中”坦普尔1号彗星的实验.探测器上所携带的重达370kg的彗星“撞击器”将以1.0×104m/s的速度径直撞向彗星的彗核部分,撞击彗星后“撞击器”融化消失,这次撞击使该彗星自身的运行速度出现1.0×10﹣7m/s的改变.已知普朗克常量h=6.6×10﹣34J•s.(计算结果保留两位有效数字).求:①撞击前彗星“撞击器”对应物质波波长;②根据题中相关信息数据估算出彗星的质量.解:①撞击前彗星“撞击器”的动量为:P=mυ=370×1.0×104=3.7×106kg•m/s则撞击前彗星“撞击器”对应物质波波长为:λ==≈1.8×10﹣40m②以彗星和撞击器组成的系统为研究对象,规定彗星初速度的方向为正方向,由动量守恒定律得:mυ=M△υ第5页(共7页)则得彗星的质量为:M===3.7×1013kg答:①撞击前彗星“撞击器”对应物质波波长是1.8×10﹣40m.②彗星的质量是3.7×1013kg.5.(2017•荆门模拟)如图,ABD为竖直平面内的轨道,其中AB段是水平粗糙的、BD段为半径R=0.4m的半圆光滑轨道,两段轨道相切于B点.小球甲从C点以速度υ0沿水平轨道向右运动,与静止在B点的小球乙发生弹性碰撞.已知甲、乙两球的质量均为m,小球甲与AB段的动摩擦因数为μ=0.5,C、B距离L=1.6m,g取10m/s2.(水平轨道足够长,甲、乙两球可视为质点)(1)甲乙两球碰撞后,乙恰能通过轨道的最高点D,求乙在轨道上的首次落点到B点的距离;(2)在满足(1)的条件下,求的甲的速度υ0;(3)若甲仍以速度υ0向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B点的距离范围.解:(1)设乙到达最高点的速度为vD,乙离开D点到达水平轨道的时间为t,乙的落点到B点的距离为x,乙恰能通过轨道最高点,则mg=m…①乙做平抛运动过程有:2R=gt2…②x=vDt…③联立①②③得:x=0.8m…④(2)设碰撞后甲、乙的速度分别为v甲、v乙,取向右为正方向,根据动量守恒定律和机械能守恒定律有mvB=mv甲+mv乙…⑤mvB2=mv甲2+mv乙2…⑥联立⑤⑥得:v乙=vB⑦第6页(共7页)对乙从B到D,由动能定理得:﹣mg•2R=mv02﹣mv乙2…⑧联立①⑦⑧得:vB=2m/s…⑨甲从C到B,由动能定理有:﹣μmgL=mvB2﹣mv02⑨解得:v0=6m/s(3)设甲的质量为M,碰撞后甲、乙的速度分别为vM、vm,取向右为正方向,根据动量守恒定律和机械能守恒定律有:MvB=MvM+mvm…⑩MvB2=MvM2+mvm2…(11)联立得⑩(11)得:vm=…(12)由M=m和M≥m,可得vB≤vm<2vB…(13)设乙球过D点时的速度为vD',由动能定理得:﹣mg•2R=mv′02﹣mvm2…(14)联立⑨(13)(14)得:2m/s≤vD'<8m/s…(15)设乙在水平轨道上的落点距B点的距离为x',有:x'=vD't…(16)联立②(15)(16)得:0.8m≤x'<3.2m…(17)答:(1)乙在轨道上的首次落点到B点的距离是0.8m;(2)甲的速度υ0是6m/s;(3)乙在轨道上的首次落点到B点的距离范围是0.8m≤x'<3.2m.6.(2016•北京)动量定理可以表示为△p=F△t,其中动量p和力F都是矢量.在运用动量定理处理二维问题时,可以在相互垂直的x、y两个方向上分别研究.例如,质量为m的小球斜射到木板上,入射的角度是θ,碰撞后弹出的角度也是θ,碰撞前后的速度大小都是υ,如图所示.碰撞过程中忽略小球所受重力.a.分别求出碰撞前后x、y方向小球的动量变化△px、△py;b.分析说明小球对木板的作用力的方向.解:a、把小球入射速度分解为vx=vsinθ,vy=﹣vcosθ,把小球反弹速度分解为vx′=vsinθ,vy′=vcosθ,则△px=m(vx′﹣vx)=0,△py=m(vy′﹣vy)=2mvcosθ,方向沿y轴正方向,第7页(共7页)b、对小球分析,根据△p=F△t得:,,则,方向沿y轴正向,根据牛顿第三定律可知,小球对木板的作用力的方向沿y轴负方向.答:a.分别求出碰撞前后x、y方向小球的动量变化△px为0,△py大小为2mvcosθ,方向沿y轴正方向;b.小球对木板的作用力的方向沿y轴负方向.

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功