集合及其表示方法学案(教师用)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

11.1.1集合及其表示方法【知识导学】知识点一集合与元素的定义(1)集合:把一些能够确定的、不同的对象汇集在一起,就说由这些对象组成一个集合(有时简称为集).(2)元素:组成集合的每个对象都是这个集合的元素.(3)表示:通常用英文大写字母A,B,C,…表示集合,用英文小写字母a,b,c,…表示集合中的元素.知识点二元素与集合的关系(1)“属于”:如果a是集合A的元素,就记作,读作“a属于A”.(2)“不属于”:如果a不是集合A的元素,就记作,读作“a不属于A”.知识点三空集一般地,我们把不含任何元素的集合称为,记作.知识点四集合中元素的三个特性(1);(2);(3).知识点五集合的分类(1;(2).知识点六几个常用数集的固定字母表示知识点七集合的表示方法集合常见的表示方法有:、、、(以及后面将要学习的维恩图法和数轴表示法等直观表示方法).(1)列举法:把集合中的元素出来(相邻元素之间用逗号分隔),并写在内,以此来表示集合的方法称为列举法.使用列举法表示集合时需注意的几点①元素之间用“,”隔开;②元素不重复,满足元素的互异性;③元素无顺序,满足元素的无序性;④对于含较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但是必须把元素间的规律表述清楚后才能用省略号.(2)描述法:如果属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有这个性质,则性质p(x)称为集合A的一个.此时,集合A可以用它的特征性质p(x)表示为.这种表示集合的方法,称为特征性质描述法,简称为描述法.知识点八区间2实数集R可以用区间表示为,“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”.我们可以把满足x≥a,xa,x≤b,xb的实数x的集合分别表示为、、.可以看出,区间实质上是一类特殊(即由数轴某一段上所有点对应的实数组成的集合)的符号表示;例如,大于1且小于10的所有自然数组成的集合就不能用区间(1,10)表示.【评价自测】1.判一判(正确的打“√”,错误的打“×”)(1)某校高一年级16岁以下的学生能构成集合.()(2)已知A是一个确定的集合,a是任一元素,要么a∈A,要么a∉A,二者必居其一且只居其一.()(3)对于数集A={1,2,x2},若x∈A,则x=0.()(4)对于区间[2a,a+1],必有a0.()(5)集合{y|y=x2,x∈R}与{s|s=t2,t∈R}的元素完全相同.()答案(1)√(2)√(3)×(4)×(5)√2.做一做(1)下列所给的对象能组成集合的是()A.“金砖国家”成员国B.接近1的数C.著名的科学家D.漂亮的鲜花(2)用适当的符号(∈,∉)填空.0________∅,0________{0},0________N,-2________N*,13________Z,2________Q,π________R.(3)不等式2x-1≥3的解集可以用区间表示为________.答案(1)A(2)∉∈∈∉∉∉∈(3)[2,+∞)【核心素养】题型一集合概念的理解例1下列所给的对象能构成集合的是________.①所有的正三角形;②高一数学必修第一册课本上的所有难题;③比较接近1的正数全体;④某校高一年级的全体女生;⑤平面直角坐标系内到原点的距离等于1的点的集合;⑥参加2019年世乒赛的年轻运动员;⑦a,b,a,c.[解析]①能构成集合.其中的元素需满足三条边相等.②不能构成集合.因“难题”的标准是模糊的,不确定的,故不能构成集合.③不能构成集合.因“比较接近1”的标准不明确,所以元素不确定,故不能构成集合.④能构成集合.其中的元素是“高一年级的全体女生”.⑤能构成集合.其中的元素是“到坐标原点的距离等于1的点”.⑥不能构成集合.因为“年轻”的标准是模糊的,不确定的,故不能构成集合.3⑦不能构成集合.因为两个a是重复的,不符合集合元素的互异性.[答案]①④⑤【金版点睛】判断一组对象能否构成集合的方法(1)关键:看是否给出一个明确的标准,使得对于任何一个对象能按此标准确定它是不是给定集合的元素.(2)切入点:解答此类问题的切入点是集合元素的特性,即确定性、互异性和无序性.【跟踪训练1】判断下列说法是否正确?并说明理由.(1)大于3的所有自然数组成一个集合;(2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素;(4)出席2019年全国两会的所有参会代表组成一个集合.解(1)中的对象是确定的,互异的,所以可构成一个集合,故正确.(2)中的“高科技”标准是不确定的,所以不能构成集合,故错误.(3)中由于0.5=12,不符合集合中元素的互异性,故错误.(4)中的对象是确定的,所以可以构成一个集合,故正确.题型二元素与集合关系的判断与应用例2(1)下列所给关系正确的个数是()①π∈R;②3∉Q;③0∈N*;④|-4|∉N*.A.1B.2C.3D.4(2)集合A中的元素x满足66-x∈N,x∈N,则集合A中的元素为________.[解析](1)∵π是实数,3是无理数,∴①②正确;∵N*表示正整数集,而0不是正整数,故③不正确;又|-4|=4是正整数,故④不正确,∴正确的共有2个.(2)∵66-x∈N,x∈N,∴66-x≥0,x≥0,即6-x0,x≥0,∴0≤x6,∴x=0,1,2,3,4,5.当x分别为0,3,4,5时,66-x相应的值分别为1,2,3,6,也是自然数,故填0,3,4,5.[答案](1)B(2)0,3,4,5【金版点睛】1.常用数集之间的关系2.确定集合中元素的三个注意点1判断集合中元素的个数时,注意集合中的元素必须满足互异性.2集合中的元素各不相同,也就是说集合中的元素一定要满足互异性.3若集合中的元素含有参数,要抓住集合中元素的互异性,采用分类讨论的方法进行研究.【跟踪训练2】(1)用符号“∈”或“∉”填空.①0________N*;②1________N;③1.5________Z;④22________Q;⑤4+5________R;⑥若x2+1=0,则x________R.(2)设x∈R,集合A中含有三个元素3,x,x2-2x.①求实数x应满足的条件;②若-2∈A,求实数x的值.答案(1)①∉②∈③∉④∉⑤∈⑥∉(2)见解析解析(1)①∵0不是正整数,∴0∉N*.②∵1是自然数,∴1∈N.③∵1.5是小数,不是整数,∴1.5∉Z.④∵22是无理数,∴22∉Q.4⑤∵4+5是无理数,无理数是实数,∴4+5∈R.⑥∵满足x2+1=0的实数不存在,∴x为非实数,∴x∉R.(2)①根据集合元素的互异性,可知x≠3,x≠x2-2x,x2-2x≠3,即x≠0,且x≠3且x≠-1.②∵x2-2x=(x-1)2-1≥-1,且-2∈A,∴x=-2.题型三集合中元素的特性例3已知集合A有三个元素:a-3,2a-1,a2+1,集合B也有三个元素:0,1,x.(1)若-3∈A,求a的值;(2)若x2∈B,求实数x的值.[解](1)由-3∈A且a2+1≥1,可知a-3=-3或2a-1=-3,当a-3=-3时,a=0;当2a-1=-3时,a=-1.经检验,0与-1都符合要求.得a=0或-1.(2)当x=0,1,-1时,都有x2∈B,但考虑到集合元素的互异性,x≠0,x≠1,故x=-1.【金版点睛】利用集合元素互异性求参数问题(1)根据集合中元素的确定性,可以解出参数的所有可能值,再根据集合中元素的互异性对集合中元素进行检验.(也是本讲易错问题)(2)利用集合中元素的特性解题时,要注意分类讨论思想的应用.【跟踪训练3】已知集合A包含三个元素:a-2,2a2+5a,12,且-3∈A,求a的值.解因为A包含三个元素a-2,2a2+5a,12,且-3∈A,所以a-2=-3或2a2+5a=-3,解得a=-1或a=-32.当a=-1时,A中三个元素为:-3,-3,12,不符合集合中元素的互异性,舍去.当a=-32时,A中三个元素为:-72,-3,12,满足题意.故a=-32.题型四集合的分类例4下列各组对象能否构成集合?若能,请指出它们是有限集、无限集,还是空集.(1)非负奇数;(2)小于18的既是正奇数又是质数的数;(3)在平面直角坐标系中所有第三象限的点;(4)在实数范围内方程(x2-1)(x2+2x+1)=0的解集;(5)在实数范围内方程组x2-x+1=0,x+y=1的解构成的集合.[解](1)能构成集合,是无限集.(2)小于18的质数是2,3,5,7,11,13,17.只有2是偶数,其余的都是正奇数,所以能构成集合,是有限集.(3)第三象限的点的横坐标和纵坐标都小于0,能构成集合,是无限集.(4)能构成集合,注意集合中元素的互异性,集合中的元素是-1,1,是有限集.(5)由x2-x+1=0的判别式Δ=-30,方程无实根,由此可知方程组x2-x+1=0,x+y=1无解,能构成集合,是空集.【金版点睛】集合的分类方法判断集合是有限集,还是无限集,关键在于弄清集合中元素的构成,从而确定集合中元素的个数.【跟踪训练4】指出下列各组对象是否能组成集合,若能组成集合,则指出集合是有限集、无限集,还是空集.(1)平方等于1的数;(2)所有的矩形;(3)平面直角坐标系中第二象限的点;(4)被3除余数是1的正数;(5)平方后等于-3的实数;(6)15的正约数.解(1)中对象能组成集合,它是一个有限集;(2)中对象能组成集合,它是一个无限5集;(3)中对象能组成集合,它是一个无限集;(4)中对象能组成集合,它是一个无限集;(5)中对象能组成集合,它是一个空集;(6)中对象能组成集合,它是一个有限集.题型五用列举法表示集合例5用列举法表示下列集合:(1)方程x2-4x+2=0的所有实数根组成的集合;(2)不大于10的质数集;(3)一次函数y=x与y=2x-1图像的交点组成的集合.[解](1)方程x2-4x+2=0的实数根为2,故其实数根组成的集合为{2}.(2)不大于10的质数有2,3,5,7,故不大于10的质数集为{2,3,5,7}.(3)由y=x,y=2x-1,解得x=1,y=1.故一次函数y=x与y=2x-1图像的交点组成的集合为{(1,1)}.【金版点睛】用列举法表示集合应注意的三点(1)应先弄清集合中的元素是什么,是数还是点,还是其他元素.(2)集合中的元素一定要写全,但不能重复.(3)若集合中的元素是点,则应将有序实数对用小括号括起来表示一个元素.【跟踪训练5】用列举法表示下列集合:(1)不等式组2x-60,1+2x≥3x-5的整数解组成的集合;(2)式子|a|a+|b|b(a≠0,b≠0)的所有值组成的集合.解(1)由2x-60,1+2x≥3x-5得3x≤6,又x为整数,故x的取值为4,5,6,组成的集合为{4,5,6}.(2)∵a≠0,b≠0,∴a与b可能同号也可能异号,则:①当a0,b0时,|a|a+|b|b=2;②当a0,b0时,|a|a+|b|b=-2;③当a0,b0或a0,b0时,|a|a+|b|b=0.故所有值组成的集合为{-2,0,2}.题型六用描述法表示集合例6用描述法表示下列集合:(1)坐标平面内,不在第一、三象限的点的集合;(2)所有被3除余1的整数的集合;(3)使y=1x2+x-6有意义的实数x的集合.[解](1)因为不在第一、三象限的点分布在第二、四象限或坐标轴上,所以坐标平面内,不在第一、三象限的点的集合为{(x,y)|xy≤0,x∈R,y∈R}.(2)因为被3除余1的整数可表示为3n+1,n∈Z,所以所有被3除余1的整数的集合为{x|x=3n+1,n∈Z}.(3)要使y=1x2+x-6有意义,则x2+x-6≠0.由x2+x-6=0,得x1=2,x2=-3.所以使y=1x2+x-6有意义的实数x的集合为{x|x≠2且x≠-3,x∈R}.【金版点睛】用描述法表示集合的注意点(1)用描述法表示集合,首先应弄清集合的属性,是数集

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功