中考总复习1有理数1、有理数的基本概念(1)正数和负数定义:大于0的数叫做正数。在正数前加上符号“-”(负)的数叫做负数。0既不是正数,也不是负数。(2)有理数正整数、0、负整数统称整数。正分数、负分数统称分数。整数和分数统称为有理数。2、数轴规定了原点、正方向和单位长度的直线叫做数轴。3、相反数代数定义:只有符号不同的两个数叫做互为相反数。几何定义:在数轴上原点的两旁,离开原点距离相等的两个点所表示的数,叫做互为相反数。一般地,a和-a互为相反数。0的相反数是0。a=-a所表示的意义是:一个数和它的相反数相等。很显然,a=0。4、绝对值定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。即:如果a0,那么|a|=a;如果a=0,那么|a|=0;如果a0,那么|a|=-a。a=|a|所表示的意义是:一个数和它的绝对值相等。很显然,a≥0。5、倒数定义:乘积是1的两个数互为倒数。1aa所表示的意义是:一个数和它的倒数相等。很显然,a=±1。6、数的比较大小法则:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。7、乘方定义:求n个相同因数的积的运算,叫做乘方。乘方的结果叫做幂。如:annaaaa个读作a的n次方(幂),在an中,a叫做底数,n叫做指数。性质:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数;0的任何正整数次幂都是0。8、科学记数法定义:把一个大于10的数表示成a×10n的形式(其中a大于或等于1且小于10,n是正整数),这种记数方法叫做科学记数法。小于-10的数也可以类似表示。用科学记数法表示一个绝对值大于10的数时,n是原数的整数数位减1得到的正整数。用科学记数法表示一个绝对值小于1的数(a×10-n)时,n是从小数点后开始到第一个知识要点不是0的数为止的数的个数。9、近似数一般地,一个近似数四舍五入到哪一位,就说这个数近似到哪一位,也叫做精确到哪一位。精确到十分位——精确到0.1;精确到百分位——精确到0.01;···。10、有理数的加法加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。加法运算律:①交换律a+b=b+a;②结合律(a+b)+c=a+(b+c)。11、有理数的减法减法法则:减去一个数,等于加这个数的相反数。即:a-b=a+(-b)。12、有理数的乘法乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数与0相乘,都得0。乘法运算律:①交换律ab=ba;②结合律(ab)c=a(bc);③分配律a(b+c)=ab+ac。13、有理数的除法除法法则:除以一个不等于0的数,等于乘这个数的倒数。即:1abab。两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。14、有理数的混合运算混合运算的顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。1、理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小。2、借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义(这里a表示有理数)。3、理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主)。4、会用科学记数法表示数(包括负指数幂的科学记数法)5、理解有理数的运算律,能运用运算律简化运算。6、能运用有理数的运算解决简单的问题。7、了解近似数,在解决实际问题中,会按问题的要求对结果取近似值。1、有理数的实际意义。2、求一个数的相反数、绝对值、倒数;在数轴上找出相应的数;数的比较大小。3、用科学记数法表示一个数(含负指数幂的科学记数法)。4、有理数基本概念(相反数、绝对值、倒数)的辨析及综合运用。5、有理数的运算。课标要求常见考点1、若收入100元记作+100元,那么支出60元记作元。2、在记录气温时,若零上5度记作+5℃,那么零下5度记作()A、5℃B、-5℃C、0℃D、-10℃3、3的相反数是,-5的倒数是,-3的绝对值是。4、2的相反数的倒数是。5、计算:-(-2)=,|-5|=。6、下列说法不正确的是()A、0的相反数、绝对值都是0B、立方等于它本身的数有3个C、平方等于它本身的数有2个D、倒数等于它本身的数有1个7、数轴上表示-3的点到原点的距离是()A、3B、-3C、31D、318、扎西在画数轴时,不小心把一滴墨水滴在已经画好的数轴上。如图所示,请根据图中标出的数,写出被墨水盖住的整数:。9、计算:1+3=,-1+(-3)=,-1+3=,1+(-3)=。1-3=,-1-(-3)=,-1-3=,1-(-3)=。1×3=,-1×(-3)=,-1×3=,1×(-3)=。1÷3=,-1÷(-3)=,-1÷3=,1÷(-3)=。10、地球上的陆地面积约为149000000平方公里,那么用科学记数法表示149000000应为()A、1.49×106B、1.49×107C、1.49×108D、1.49×10911、光年是天文学中的距离单位,1光年大约是9500000000000km,则这个数用科学记数法表示应为。12、甲型H1N1流感病毒变异后的直径为0.00000013米,这个数用科学记数法表示应该是()A、1.3×10-6B、1.3×10-7C、1.3×10-8D、1.3×10-913、近年来,我国大部分地区饱受“四面霾伏”的困扰。霾的主要成分是PM2.5,是指直径小于或等于0.0000025m的颗粒物。那么数0.0000025用科学记数法可表示为()A、25×10-5B、25×10-6C、2.5×10-5D、2.5×10-614、2.396≈(精确到百分位)2.396≈(精确到十分位)15、在0,-2,1,21这四个数中,最小的数是()A、0B、-2C、1D、2116、若a的相反数是最大的负整数,b是绝对值最小的数,则a+b=。专题训练-2-4-3-14321017、如果a的倒数是-1,那么a2014等于()A、-1B、1C、2014D、-201418、已知a、b互为相反数,c、d互为倒数,则20122012)()(cdba=。19、某天早晨的气温是-7℃,中午上升了11℃,那么中午的气温是℃。20、日喀则某天的最高气温是10℃,最低气温是-8℃,那么这天日喀则的最高气温比最低气温高()A、-18℃B、-2℃C、2℃D、18℃21、计算:324(2)316[(3)2(2)]。