七年级下《平行线的判定》教学反思程怡《平行线的判定》一节课的设计中,我注重了以下几个方面:1、贴近学生的认知,为学生的探索和理解搭适当的梯子,力争让他们“跳一跳,够得到。在引入问题时,先让学生动手摆模型获取直观感受,再在画图过程中寻找合理解释,符合从感性到理性的认知规律。又如在发现“同位角相等,两直线平行”后,在练习中引出关于内错角关系的探索;而在同旁内角的关系探索前,提炼了“内错角相等,两直线平行”的发现过程所用到的转化思想,则同旁内角转化为同位角或内错角也就可以类比着进行了。又如,在第一个练习题中,我就铺垫了先找角与线之间的关系的题目,这为学生运用角的关系识别平行线作了一个思维引导,所以后面学生在运用过程中出错的几率很低。2、培养学生自主探索的意识。相对而言,小学教学侧重于训练学生基本的运算能力,规范的语言和书写表达。所以不少学生在小学阶段,学习比较习惯于机械记忆和“依葫芦画瓢”的简单劳动。从初一年级开始,我认为就应该有意识地培养学生自主探索这种可以让其终生受益的数学素养。所以在平时教学中,我一直注重让学生体会知识的发生过程,让他们在这个过程中逐步掌握研究数学问题的一些常用方法,体验成功,享受高级的愉悦。这节课的内容,老师只需要五分钟时间讲解就能完成三种识别方法的“发现”,在运用部分进行反复训练,学生学习的短期效果一定很好,但不能激发学生内在发展动力。所以,我将这节课的重心明显偏移向了发现过程。3、突出学生是学习的主体,把问题尽量抛给学生解决。老师作为学习的组织者,引导者,合作者,做好牵针引线的工作。这节课中,我除了作必要的引导和示范外,问题的发现,解决,练习题的讲解尽可能让学生自己完成。4、形式多样,求实务本。从生活问题引入,发现第一种识别方法,然后解决实际问题;在巩固练习中发现新的问题,激发学生再次探索,形成结论;练习题中注重图形的变化,在图形中为学生设置易错点再及时纠错;用几何画板设计游戏“米奇走迷宫”,在游戏中检验学生运用知识的熟练程度。而每一个环节的设计都是围绕着需要解决的问题展开,不是单纯地追求形式的变化。5、有意识地对学生渗透“转化”思想;有意识地将数学学习与生活实际联系起来。本节课对初一学生而言,本是又一个艰难的起步。但这一堂课,学生学得比较轻松,课后作业效果也很好,基本达到“轻负荷,高质量”的教学要求。