精品文档精品文档第十一章全等三角形及其应用【知识精读】1.全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。互相重合的边叫对应边,互相重合的角叫对应角。2.全等三角形的表示方法:若△ABC和△A′B′C′是全等的三角形,记作“△ABC≌△A′B′C′其中,“≌”读作“全等于”。记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。3.全等三角形的的性质:全等三角形的对应边相等,对应角相等;4.寻找对应元素的方法(1)根据对应顶点找如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。(2)根据已知的对应元素寻找全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(3)通过观察,想象图形的运动变化状况,确定对应关系。通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的。翻折如图(1),BOC≌EOD,BOC可以看成是由EOD沿直线AO翻折180得到的;旋转如图(2),COD≌BOA,COD可以看成是由BOA绕着点O旋转180得到的;精品文档精品文档平移如图(3),DEF≌ACB,DEF可以看成是由ACB沿CB方向平行移动而得到的。5.判定三角形全等的方法:(1)边角边公理、角边角公理、边边边公理、斜边直角边公理(2)推论:角角边定理6.注意问题:(1)在判定两个三角形全等时,至少有一边对应相等;(2)不能证明两个三角形全等的是,a:三个角对应相等,即AAA;b:有两边和其中一角对应相等,即SSA。全等三角形是研究两个封闭图形之间的基本工具,同时也是移动图形位置的工具。在平面几何知识应用中,若证明线段相等或角相等,或需要移动图形或移动图形元素的位置,常常需要借助全等三角形的知识。【分类解析】全等三角形知识的应用(1)证明线段(或角)相等【例1】如图,已知AD=AE,AB=AC.求证:BF=FC分析:由已知条件可证出ΔACD≌ΔABE,而BF和FC分别位于ΔDBF和ΔEFC中,因此先证明ΔACD≌ΔABE,再证明ΔDBF≌ΔECF,既可以得到BF=FC.证明:在ΔACD和ΔABE中,精品文档精品文档AE=AD∠A=∠AAB=AC.∴ΔACD≌ΔABE(SAS)∴∠B=∠C(全等三角形对应角相等)又∵AD=AE,AB=AC.∴AB-AD=AC-AE即BD=CE在ΔDBF和ΔECF中∠B=∠C∠BFD=∠CFE(对顶角相等)BD=CE∴ΔDBF≌ΔECF(AAS)∴BF=FC(全等三角形对应边相等)(2)证明线段平行【例2】已知:如图,DE⊥AC,BF⊥AC,垂足分别为E、F,DE=BF,AF=CE.求证:AB∥CDDCBAEF分析:要证AB∥CD,需证∠C=∠A,而要证∠C=∠A,又需证ΔABF≌ΔCDE.由已知BF⊥AC,DE⊥AC,知∠DEC=∠BFA=90°,且已知DE=BF,AF=CE.显然证明ΔABF≌ΔCDE条件已具备,故可先证两个三角形全等,再证∠C=∠A,进一步证明AB∥CD.证明:∵DE⊥AC,BF⊥AC(已知)∴∠DEC=∠BFA=90°(垂直的定义)在ΔABF与ΔCDE中,精品文档精品文档AF=CE(已知)∠DEC=∠BFA(已证)DE=BF(已知)∴ΔABF≌ΔCDE(SAS)∴∠C=∠A(全等三角形对应角相等)∴AB∥CD(内错角相等,两直线平行)(3)证明线段的倍半关系,可利用加倍法或折半法将问题转化为证明两条线段相等【例3】如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,取AB的中点E,连接CD和CE.求证:CD=2CE分析:(ⅰ)折半法:取CD中点F,连接BF,再证ΔCEB≌ΔCFB.这里注意利用BF是ΔACD中位线这个条件。证明:取CD中点F,连接BF∴BF=12AC,且BF∥AC(三角形中位线定理)∴∠ACB=∠2(两直线平行内错角相等)又∵AB=AC∴∠ACB=∠3(等边对等角)∴∠3=∠2在ΔCEB与ΔCFB中,BF=BE∠3=∠2CB=CB∴ΔCEB≌ΔCFB(SAS)∴CE=CF=12CD(全等三角形对应边相等)即CD=2CE(ⅱ)加倍法证明:延长CE到F,使EF=CE,连BF.精品文档精品文档AEBDCF4123在ΔAEC与ΔBEF中,AE=BE∠1=∠2(对顶角相等)CE=FE∴ΔAEC≌ΔBEF(SAS)∴AC=BF,∠4=∠3(全等三角形对应边、对应角相等)∴BF∥AC(内错角相等两直线平行)∵∠ACB+∠CBF=180o,∠ABC+∠CBD=180o,又AB=AC∴∠ACB=∠ABC∴∠CBF=∠CBD(等角的补角相等)在ΔCFB与ΔCDB中,CB=CB∠CBF=∠CBDBF=BD∴ΔCFB≌ΔCDB(SAS)∴CF=CD即CD=2CE说明:关于折半法有时不在原线段上截取一半,而利用三角形中位线得到原线段一半的线段。例如上面折道理题也可这样处理,取AC中点F,连BF(如图)(B为AD中点是利用这个办法的重要前提),然后证CE=BF.(4)证明线段相互垂直【例4】已知:如图,A、D、B三点在同一条直线上,ΔADC、ΔBDO为等腰三角形,AO、BC的大小关系和位置关系分别如何?证明你的结论。精品文档精品文档CBAOED分析:本题没有直接给出待证的结论,而是让同学们先根据已知条件推断出结论,然后再证明所得出的结论正确。通过观察,可以猜测:AO=BC,AO⊥BC.证明:延长AO交BC于E,在ΔADO和ΔCDB中AD=DC∠ADO=∠CDB=90oOD=DB∴ΔADO≌ΔCDB(SAS)∴AO=BC,∠OAD=∠BCD(全等三角形对应边、对应角相等)∵∠AOD=∠COE(对顶角相等)∴∠COE+∠OCE=90o∴AO⊥BC5、中考点拨:【例1】如图,在△ABC中,AB=AC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连结ED,并延长ED到点F,使DF=DE,连结FC.求证:∠F=∠A.分析:证明两个角相等,常证明这两个角所在的两个三角形全等,在已知图形中∠A、∠F不在全等的两个三角形中,但由已知可证得EF∥AC,因此把∠A通过同位角转到△BDE中的∠BED,只要证△EBD≌△FCD即可.证明:∵AB=AC,精品文档精品文档∴∠ACB=∠B,∵EB=ED,∴∠ACB=∠EDB.∴ED∥AC.∴∠BED=∠A.∵BE=EA.∴BD=CD.又DE=DF,∠BDE=∠CDF∴△BDE≌△CDF,∴∠BED=∠F.∴∠F=∠A.说明:证明角(或线段)相等可以从证明角(或线段)所在的三角形全等入手,在寻求全等条件时,要注意结合图形,挖掘图中存在的对项角、公共角、公共边、平行线的同位角、内错角等相等的关系。【例2】如图,已知△ABC为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连接CE、DE.求证:EC=EDBCDEFA分析:把已知条件标注在图上,需构造和△AEC全等的三角形,因此过D点作DF∥AC交BE于F点,证明△AEC≌△FED即可。证明:过D点作DF∥AC交BE于F点∵△ABC为等边三角形∴△BFD为等边三角形∴BF=BD=FD∵AE=BD∴AE=BF=FD∴AE-AF=BF-AF即EF=AB精品文档精品文档∴EF=AC在△ACE和△DFE中,EF=AC(已证)∠EAC=∠EDF(两直线平行,同位角相等)AE=FD(已证)∴△AEC≌△FED(SAS)∴EC=ED(全等三角形对应边相等)题型展示:【例1】如图,△ABC中,∠C=2∠B,∠1=∠2。求证:AB=AC+CD.分析:在AB上截取AE=AC,构造全等三角形,△AED≌△ACD,得DE=DC,只需证DE=BE问题便可以解决.证明:在AB上截取AE=AC,连结DE.∵AE=AC,∠1=∠2,AD=AD,∴△AED≌△ACD,∴DE=DC,∠AED=∠C.∵∠AED=∠B+∠EDB,∠C=2∠B,∴2∠B=∠B+∠EDB.即∠B=∠EDB.∴EB=ED,即ED=DC,∴AB=AC+DC.剖析:证明一条线段等于另外两条线段之和的常用方法有两种,一种是截长法(即在长线段上截取一段等于两条短线段的一条,再证余下的部分等于另一条短线段);如作AE=AC是利用了角平分线是角的对称轴的特性,构造全等三角形,另一种方法是补短法(即延长一条短线段等于长线段,再证明延长的部分与另一条短线段相等),其目的是把证明线段的和差转化为证明线段相等的问题,实际上仍是构造全等三角形,这种转化图形的能力是中考命题的重点考查的内容.【实战模拟】1.下列判断正确的是()精品文档精品文档(A)有两边和其中一边的对角对应相等的两个三角形全等(B)有两边对应相等,且有一角为30°的两个等腰三角形全等(C)有一角和一边对应相等的两个直角三角形全等(D)有两角和一边对应相等的两个三角形全等2.已知:如图,CD⊥AB于点D,BE⊥AC于点E,BE、CD交于点O,且AO平分∠BAC.求证:OB=OC.3.如图,已知C为线段AB上的一点,ACM和CBN都是等边三角形,AN和CM相交于F点,BM和CN交于E点。求证:CEF是等边三角形。4.如图,在△ABC中,AD为BC边上的中线。求证:AD12(AB+AC)5.如图,在等腰Rt△ABC中,∠C=90°,D是斜边上AB上任一点,AE⊥CD于E,BF⊥CD交CD的延长线于F,CH⊥AB于H点,交AE于G.求证:BD=CG.ABCMNEF12精品文档精品文档【试题答案】1.D2.证明:∵AO平分∠ODB,CD⊥AB于点D,BE⊥AC于点E,BE、CE交于点O,∴OD=OE,∠ODB=∠OEC=90°,∠BOD=∠COE。∴△BOD≌△COE(ASA).∴OB=OC3.分析由ACM=BCN=60,知ECF=60,欲证CEF是等边三角形,只要证明CEF是等腰三角形。先证CAN≌MCB,得1=2.再证CFN≌CEB,即可推得CEF是等边三角形的结论。证明:在CAN和MCB,∵AC=MC,CN=CB,CAN=MCB=120,∴ACN≌MCB中,∴FCB和CEB中,∵FCN=ECB=60,1=2,CN=CB,∴CFN≌CEB,∴CF=CE,又∵ECF=60,∴CEF是等边三角形.4.分析:关于线段不等的问题,一般利用在同一个三角形中三边关系来讨论,由于AB、AC、AD不在同一个三角形,应设法将这三条线段转化在同一个三角形中,也就是将线段相等地转化,而转化的通常方法利用三角形全等来完成,注意AD是BC边上的中线,延长AD至E,使DE=AD,即可得到△ACD≌△EBD.证明:延长AD到E,使DE=AD,连结BE在ACD与EBD中精品文档精品文档∴ACD≌EBD(SAS)∴AC=EB(全等三角形对应边相等)在ABE中,AB+EB>AE(三角形两边之和大于第三边)∴AB+AC>2AD(等量代换)说明:一般在有中点的条件时,考虑延长中线来构造全等三角形。5.分析:由于BD与CG分别在两个三角形中,欲证BD与CG相等,设法证△CGE≌△BDF。由于全等条件不充分,可先证△AEC≌△CFB证明:在Rt△AEC与Rt△CFB中,∵AC=CB,AE⊥CD于E,BF⊥C交CD的延长线于F∴∠AEC=∠CFB=90°又∠ACB=90°∴∠CAE=90°-∠ACE=∠BCF∴Rt△AEC≌Rt△CFB∴CE=BF在Rt△BFD与Rt△CEG中,∠F=∠GEC=90°,CE=BF,由∠FBD=90°-∠FDB=90°-∠CDH=∠ECG,∴Rt△BFD≌Rt△CEG∴BD=CG精品文档精品文档第十二章轴对称1.如果一个图形沿着某一条直线对折,对折的两部分能完全重合,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴。这时,我们就说这个图形关于这条直