小专题(一)矩形中的折叠问题【例】(连云港中考)在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且AB=2,求BC的长.【思路点拨】(1)证△ABE≌△CDF,推出AE=CF,求出DE=BF,DE∥BF,根据平行四边形判定推出即可;(2)求出∠ABE=30°,根据直角三角形性质求出AE、BE,即可求出答案.【方法归纳】解决有关矩形的折叠问题时,通常方法是利用根据矩形的性质、折叠的对称性及勾股定理求解.1.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为()A.12B.10C.8D.62.如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG=60°.现沿直线GE将纸片折叠,使点B落在纸片上的点H处,连接AH,则图中与∠BEG相等的角的个数为()A.5个B.4个C.3个D.2个3.如图,将矩形ABCD沿直线EF对折,点D恰好与BC边上的点H重合,∠GFP=62°,那么∠EHF的度数等于________.4.把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3cm,BC=5cm,则重叠部分△DEF的面积是________cm2.5.将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,求点B的坐标和点E的坐标;(自己重新画图)(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.小专题(二)特殊平行四边形中的最值问题【例】(盐城中考)如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上.已知EP=FP=4,EF=43,∠BAD=60°,且AB>43.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.【思路点拨】(1)求∠EPF的大小,就是解△EFP,通过作底边上的高转化为直角三角形解决;(2)这里∠BAD+∠EPF=180°,PE=PF,可通过构造全等三角形解决问题;(3)观察图形,作PM⊥AB于M,AP的长随PM大小的变化而变化.【方法归纳】动态图形中最值问题关键要改变思考的角度,善于转化为另一个量的最值问题考虑.1.如图,∠MON=90°,矩形ABCD的顶点A,B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离是多少?2.以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,求线段AB的最小值.小专题(三)特殊平行四边形中的多结论选择【例】(深圳中考改编)如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③S△BEF=725.在以上3个结论中,正确的有________.【方法归纳】解答此类题目的前提是掌握特殊平行四边形的性质和判定,再将每一个结论逐个进行判断.1.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF.正确的有()A.4个B.3个C.2个D.1个2.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=14BD;其中正确结论的是()A.①②③B.①②④C.①③④D.②③④3.如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于E,点G是AE中点且∠AOG=30°,则下列结论正确的个数为()①DC=3OG;②OG=12BC;③△OGE是等边三角形;④S△AOE=16S矩形ABCD.A.1个B.2个C.3个D.4个4.(泸州中考)如图,在矩形ABCD中,BC=2AB,∠ADC的平分线交边BC于点E,AH⊥DE于点H,连接CH并延长交边AB于点F,连接AE交CF于点O,给出下列命题:①∠AEB=∠AEH;②DH=22EH;③HO=12AE.其中正确命题的序号是________(填上所有正确命题的序号).课前过关1.如图,E,F是菱形ABCD对角线上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2)若∠DAB=60°,AD=6,AE=DE,求菱形BEDF的周长.2.E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:(1)四边形CFEG是矩形;(2)AE=FG.