21.3-用待定系数法确定一次函数的表达式

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

导入新课讲授新课当堂练习课堂小结21.3用待定系数法确定一次函数表达式第二十一章一次函数学习目标1.理解待定系数法的意义.2.会用待定系数法求一次函数的表达式.(重点、难点)导入新课问题引入确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?一个两个讲授新课待定系数法一如图,已知一次函数的图象经过P(0,-1),Q(1,1)两点.怎样确定这个一次函数的表达式呢?合作探究因为一次函数的一般形式是y=kx+b(k,b为常数,k≠0),要求出一次函数的表达式,关键是要确定k和b的值(即待定系数).函数表达式y=kx+b满足条件的两点(x1,y1),(x2,y2)一次函数的图象直线l选取解出画出选取因为P(0,-1)和Q(1,1)都在该函数图象上,因此它们的坐标应满足y=kx+b,将这两点坐标代入该式中,得到一个关于k,b的二元一次方程组:k·0+b=-1,k+b=1.{{解这个方程组,得k=2,b=-1.所以,这个一次函数的表达式为y=2x-1.像这样,通过先设定函数表达式(确定函数模型),再根据条件确定表达式中的未知系数,从而求出函数表达式的方法称为待定系数法.知识要点例1.已知一次函数的图象经过点A(-1,3),B(2,-5),求这个函数的表达式.解:设y=kx+b,由于A,B两点都在这个函数的图象上.因此-k+b=3,2k+b=-5.因此所求一次函数的表达式为解得k=,b=.1383-y=x+.83-13典例精析做一做一次函数y=kx+b(k≠0)的图象如图,则下列结论正确的是()A.k=2B.k=3C.b=2D.b=3DyxO23利用待定系数法解决简单的实际问题二温度的度量有两种:摄氏温度和华氏温度.水的沸点温度是100℃,用华氏温度度量为212℉;水的冰点温度是0℃,用华氏温度度量为32℉.已知摄氏温度与华氏温度的关近似地为一次函数关系,你能不能想出一个办法方便地把华氏温度换算成摄氏温度?例2用C,F分别表示摄氏温度与华氏温度,由于摄氏温度与华氏温度的关系近似地为一次函数关系,因此可以设C=kF+b,解:由已知条件,得212k+b=100,32k+b=0.{解这个方程组,得k,b.516099因此摄氏温度与华氏温度的函数关系式为CF516099例3.百舸竞渡,激情飞扬,端午节期间,某地举行龙舟比赛.甲、乙两支龙舟队在比赛时路程y(米)与时间x(分)之间的函数图象如图.根据图象回答下列问题:(1)1.8分钟时,哪支龙舟队处于领先位置?(2)在这次龙舟赛中,哪支龙舟队先到达终点?提前多少时间到达?(3)求乙队加速后,路程y(米)与时间x(分)之间的函数关系式.300O1234600105015054.5乙甲y(米)x(分)(1)(2)观察图象可得.(3)用待定系数法解.分析解:由图象,可知(1)1.8分钟时甲龙舟队处于领先位置.(2)在这次龙舟赛中,乙龙舟队先到达终点,比甲提前0.5分钟.(3)设乙队加速后,y与x的关系式为y=kx+b.将(2,300)、(4.5,1050)分别代入上式,得解得∴y=300x-300(2≤x≤4.5)2+=3004.5+=1050.kbkb,=300=300.kb-,300O1234600105015054.5乙甲y(米)x(分)做一做某种拖拉机的油箱可储油40L,加满油并开始工作后,油箱中的剩余油量y(L)与工作时间x(h)之间为一次函数关系,函数图象如图所示.(1)求y关于x的函数表达式;(2)一箱油可供拖拉机工作几小时?y=-5x+40.8h当堂练习2.已知函数y=kx+b(k≠0)的图象与y轴交点的纵坐标为-2,且当x=2时,y=1,那么此函数的表达式为.322yx1.已知正比例函数y=kx(k≠0)的图象经过点(1,-2),则这个正比例函数的表达式为()A.y=2xB.y=-2xC.D.A12yx12yx3.如图,直线l是一次函数y=kx+b的图象,填空:(1)b=______,k=______;(2)当x=30时,y=______;(3)当y=30时,x=______.2-18-42l-2/34.某医药研究所开发了一种新药,在实际验药时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y(毫克)随时间x(时)的变化情况如图所示,当成年人按规定剂量服药后.(1)服药后______时,血液中含药量最高,达到每毫升_______毫克,接着逐步衰弱.(2)服药后5时,血液中含药量为每毫升____毫克.263x/时y/毫克6325O(3)当x≤2时,y与x之间的函数关系式是___________.(4)当x≥2时,y与x之间的函数关系式是___________.(5)如果每毫升血液中含药量3毫克或3毫克以上时,治疗疾病最有效,那么这个有效时间是_____时.y=3xy=-x+84x/时y/毫克6325O课堂小结用待定系数法确定一次函数的表达式2.根据已知条件列出关于k、b的方程组;1.设所求的一次函数表达式为y=kx+b;3.解方程,求出k、b;4.把求出的k,b代回表达式即可.

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功