11对数与对数运算

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

高一暑假对对数数与与对对数数运运算算知知识识要要点点::一、对数1、定义:一般地,如果a(a>0,a≠1)的x次幂等于N,就是xaN,那么数x就叫做以a为底N的对数(logarithm),记作x=logaN,其中a叫做对数的底数,N叫做真数,式子logaN叫做对数式.2、特殊对数:对数logaN(a>0且a≠1)在底数a=10时,叫做常用对数(commonlogarithm),简记lgN;底数a=e时,叫做自然对数(naturallogarithm),记作lnN,其中e是个无理数,即e≈2.71828…….3、对数和指数间的关系:当a0且a≠1时,ax=Nx=logaNaNx指数式ax=N底数幂指数对数式logaN=x底数真数对数4、特殊结论:(1)负数和零没有对数。(2)loga1=0logaa=1(3)logaNaN(a>0,a≠1,N>0).(4)xaxalog二、对数的运算1、对数运算性质(1)logloglog(2)logloglog(3)loglog()0,1,0,0aaaaaanaaMNMNMMNNMnMnRaaMN2、换底公式:logloglogcacbba(0a,且1a;0c,且1c;0b).典型例题:例1.将下列指数式写成对数式:(1)35125(2)712128(3)327a(4)2100.01高一暑假例2.将下列对数式写成指数式:(1)12log325(2)lg0.001=-3(3)ln100=4.606(4)xe2ln例3.求下列各式中x的值:(1)642log3x(2)log86x(3)lg4x(4)3lnex例4.用logax,logay,logaz表示下列各式:(1)2logaxyz;(2)35logaxyz例5.计算:(1)5log25;(2)0.4log1;(3)852log(42);(4)lg9100例6.利用对数的换底公式化简(1)accaloglog(2)2log5log4log3log5432(3))2log2)(log3log3(log9384高一暑假同步练习:1、对数式与指数式互化422222(1)2161(2)416(3)510(4)5(5)log83(6)log5129(7)log3(8)log8aanaa2、求下列各式的值2(1)log1024(2)4log32(3)27log9(4)3log2433计算:4、下列等式(其中0,1,0,aaxynN)成立的是①logloglog()aaaxyxy②logloglog()aaaxyxy③loglog()aaxxyy④logloglogaaaxxyy⑤121loglog2aaxx⑥1loglog2aaxx⑦1loglognaaxxn⑧logloglog()aaaxyxy高一暑假4、用logax,logay,logaz表示下列各式:作业1、求值;①33log18log2②552log10log0.25=③22log(log16)=2、已知lg2,lg3ab,求下列各式的值:①lg6=②3lg2=3、求x的值;①logloglogaaaxmn,则x=②1logloglog2aaaxbc,则x=4、用32log,log,loglogaaaazxyzxy表示5、计算:22lg4lg258lg2lg56、计算:22271loglog12log42482提高题7、若lg()lg(2)lg2lglgxyxyxy,求xy的值。

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功