高中数学圆锥曲线知识点

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

高中数学知识点—圆锥曲线部分一、平面解析几何的知识结构:二、考点(限考)概要:1、椭圆:(1)轨迹定义:①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为:;②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数e是离心率。用集合表示为:;e越小,椭圆越圆;e越大,椭圆越扁(2)标准方程和性质:①范围:由标准方程22221xyab知||xa,||yb,说明椭圆位于直线xa,yb所围成的矩形里;②对称性:在曲线方程里,若以y代替y方程不变,所以若点(,)xy在曲线上时,点(,)xy也在曲线上,所以曲线关于x轴对称,同理,以x代替x方程不变,则曲线关于y轴对称。若同时以x代替x,y代替y方程也不变,则曲线关于原点对称。所以,椭圆关于x轴、y轴和原点对称。这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x轴、y轴的交点坐标。在椭圆的标准方程中,令0x,得yb,则1(0,)Bb,2(0,)Bb是椭圆与y轴的两个交点。同理令0y得xa,即1(,0)Aa,2(,0)Aa是椭圆与x轴的两个交点。所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。同时,线段21AA、21BB分别叫做椭圆的长轴和短轴,它们的长分别为2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长。由椭圆的对称性知:椭圆的短轴端点到焦点的距离为a;在22RtOBF中,2||OBb,2||OFc,22||BFa,且2222222||||||OFBFOB,即222cab;④离心率:椭圆的焦距与长轴的比cea叫椭圆的离心率。∵0ac,∴01e,椭圆形状与e的关系:当e→0,c→0,椭圆→圆,直至成为极限位置的圆,则认为圆是椭圆在e=0时的特例。当e→1,c→a椭圆变扁,直至成为极限位置的线段,此时也可认为是椭圆在e=1时的特例。⑤、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。⑥利用焦半径公式计算焦点弦长:若斜率为k的直线被圆锥曲线所截得的弦为AB,A、B两点的坐标分别为,则弦长这里体现了解析几何“设而不求”的解题思想。⑦若过椭圆左(或右)焦点的焦点弦为AB,则;注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。(3)参数方程:(θ为参数);2、双曲线:(1)轨迹定义:①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为:②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。用集合表示为:e越大,双曲线的开口越阔(2)标准方程和性质:①范围:从标准方程12222byax,看出曲线在坐标系中的范围:双曲线在两条直线ax的外侧。即22ax,ax即双曲线在两条直线ax的外侧。②对称性:双曲线12222byax关于每个坐标轴和原点都是对称的,这时,坐标轴是双曲线的对称轴,原点是双曲线12222byax的对称中心,双曲线的对称中心叫做双曲线的中心。③顶点:双曲线和对称轴的交点叫做双曲线的顶点。在双曲线12222byax的方程里,对称轴是,xy轴,所以令0y得ax,因此双曲线和x轴有两个交点)0,()0,(2aAaA,他们是双曲线12222byax的顶点。令0x,没有实根,因此双曲线和y轴没有交点。1)注意:双曲线的顶点只有两个,这是与椭圆不同的(椭圆有四个顶点),双曲线的顶点分别是实轴的两个端点。2)实轴:线段2AA叫做双曲线的实轴,它的长等于2,aa叫做双曲线的实半轴长。虚轴:线段2BB叫做双曲线的虚轴,它的长等于2,bb叫做双曲线的虚半轴长。④渐近线:注意到开课之初所画的矩形,矩形确定了两条对角线,这两条直线即称为双曲线的渐近线。从图上看,双曲线12222byax的各支向外延伸时,与这两条直线逐渐接近。⑤等轴双曲线:1)定义:实轴和虚轴等长的双曲线叫做等轴双曲线。定义式:ab;2)等轴双曲线的性质:(1)渐近线方程为:xy;(2)渐近线互相垂直⑶离心率2e.。注意以上几个性质与定义式彼此等价。亦即若题目中出现上述其一,即可推知双曲线为等轴双曲线,同时其他几个亦成立。3)注意到等轴双曲线的特征ab,则等轴双曲线可以设为:)0(22yx,当0时交点在x轴,当0时焦点在y轴上。⑥注意191622yx与221916yx的区别:三个量,,abc中,ab不同(互换)c相同,还有焦点所在的坐标轴也变了。4)共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.2222byax与2222byax互为共轭双曲线,它们具有共同的渐近线:02222byax.区别:三常数a、b、c中a、b不同(互换)c相同,它们共用一对渐近线。双曲线和它的共轭双曲线的焦点在同一圆上。确定双曲线的共轭双曲线的方法:将1变为-1。5)共渐近线的双曲线系方程:)0(2222byax的渐近线方程为02222byax如果双曲线的渐近线为0byax时,它的双曲线方程可设为)0(2222byax.6、结合下图熟记双曲线的:“四点八线,一个三角形”,即:四点:顶点和焦点;八线:实轴、虚轴、准线、渐进线、焦点弦、垂线PQ。三角形:焦点三角形。7、双曲线形状与e的关系:,e越大,即渐近线的斜率的绝对值就越大,这时双曲线的形状就从扁狭逐渐变得开阔。由此可知,双曲线的离心率越大,它的开口就越阔。8、双曲线的焦点到渐近线的距离为b。10、过双曲线外一点P(x,y)的直线与双曲线只有一个公共点的情况如下:(1)P点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;(2)P点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;(3)P在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;(4)P为原点时不存在这样的直线;注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。3、抛物线:(1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为:(2)标准方程和性质:注意;①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;说明:(1)通径:过抛物线的焦点且垂直于对称轴的弦称为通径;(2)抛物线的几何性质的特点:有一个顶点,一个焦点,一条准线,一条对称轴,无对称中心,没有渐近线;注意强调p的几何意义:是焦点到准线的距离。⑶设抛物线的标准方程为2y=2px(p0),则抛物线的焦点到其顶点的距离为2p,顶点到准线的距离2p,焦点到准线的距离为p.⑷抛物线2y=2px(p0)上的点M(x0,y0)与焦点F的距离20pxMF;抛物线2y=-2px(p0)上的点M(x0,y0)与焦点F的距离02xpMF⑸、抛物线的焦点弦(过焦点的弦)为AB,且,则有如下结论:⑹、结合图形熟记抛物线:“两点两线,一个直角梯形”,即:两点:顶点和焦点;两线:准线、焦点弦;梯形:直角梯形ABCD。⑺、对于抛物线上的点的坐标可设为,以简化计算;⑻、过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线;4、圆⑴、定义:点集{M||OM|=r},其中定点O为圆心,定长r为半径.⑵、方程:①标准方程:圆心在c(a,b),半径为r的圆方程是(x-a)2+(y-b)2=r2圆心在坐标原点,半径为r的圆方程是x2+y2=r2②一般方程:①当D2+E2-4F>0时,一元二次方程x2+y2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2,2(ED半径是2422FED。配方,将方程x2+y2+Dx+Ey+F=0化为(x+2D)2+(y+2E)2=44F-ED22②当D2+E2-4F=0时,方程表示一个点(-2D,-2E);③当D2+E2-4F<0时,方程不表示任何图形.⑶点与圆的位置关系已知圆心C(a,b),半径为r,点M的坐标为(x0,y0),则|MC|<r点M在圆C内,|MC|=r点M在圆C上,|MC|>r点M在圆C内,其中|MC|=2020b)-(ya)-(x。⑷直线和圆的位置关系:①直线和圆有相交、相切、相离三种位置关系:直线与圆相交有两个公共点;直线与圆相切有一个公共点;直线与圆相离没有公共点。⑸直线和圆的位置关系的判定:(i)判别式法;(ii)利用圆心C(a,b)到直线Ax+By+C=0的距离22BACBbAad与半径r的大小关系来判定。三、圆锥曲线的统一定义:统一定义,三种圆锥曲线均可看成是这样的点集:,其中F为定点,d为点P到定直线的l距离,,e为常数,其中定点F称为焦点,定直线l称为准线,正常数e称为离心率。(平面内的动点P(x,y)到一个定点F(c,0)的距离与到不通过这个定点的一条定直线l的距离之比是一个常数e(e>0),则动点的轨迹叫做圆锥曲线。)如图。当0<e<1时,点P的轨迹是椭圆;当e>1时,点P的轨迹是双曲线;当e=1时,点P的轨迹是抛物线。四、椭圆、双曲线、抛物线椭圆双曲线抛物线定义1.到两定点F1,F2的距离之和为定值2a(2a|F1F2|)的点的轨迹2.与定点和直线的距离之比为定值e的点的轨迹.(0e1)1.到两定点F1,F2的距离之差的绝对值为定值2a(02a|F1F2|)的点的轨迹2.与定点和直线的距离之比为定值e的点的轨迹.(e1)与定点和直线的距离相等的点的轨迹.轨迹条件点集:({M||MF1+|MF2|=2a,|F1F2|<2a}.点集:{M||MF1|-|MF2|.=±2a,|F2F2|>2a}.点集{M||MF|=点M到直线l的距离}.图形方程标准方程12222byax(ba0)12222byax(a0,b0)pxy22参数方程为离心角)参数(sincosbyax为离心角)参数(tansecbyaxptyptx222(t为参数)范围─axa,─byb|x|a,yRx0中心原点O(0,0)原点O(0,0)顶点(a,0),(─a,0),(0,b),(0,─b)(a,0),(─a,0)(0,0)对称轴x轴,y轴;长轴长2a,短轴长2bx轴,y轴;实轴长2a,虚轴长2b.x轴焦点F1(c,0),F2(─c,0)F1(c,0),F2(─c,0))0,2(pF准线x=±ca2准线垂直于长轴,且在椭圆外.x=±ca2准线垂直于实轴,且在两顶点的内侧.x=-2p准线与焦点位于顶点两侧,且到顶点的距离相等.焦距2c(c=22ba)2c(c=22ba)离心率)10(eace)1(eacee=1五、圆锥曲线的几何性质:几何性质是圆锥曲线内在的、固有的性质,不因为位置的改变而改变。①定性:焦点在与准线垂直的对称轴上ⅰ椭圆及双曲线:中心为两焦点中点,两准线关于中心对称;ⅱ椭圆及双曲线关于长轴、短轴或实轴、虚轴为轴对称,关于中心为中心对称;ⅲ抛物线的对称轴是坐标轴,对称中心是原点。②定量:六、圆锥曲线的标准方程及解析量(随坐标改变而变)以焦点在x轴上的方程为例:七、问题处理Ⅰ中点弦:处理椭圆、双曲线、抛物线的弦中

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功