(完整版)高中数学导数知识点归纳总结

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

§14.导导数数知知识识要要点点1.导数(导函数的简称)的定义:设0x是函数)(xfy定义域的一点,如果自变量x在0x处有增量x,则函数值y也引起相应的增量)()(00xfxxfy;比值xxfxxfxy)()(00称为函数)(xfy在点0x到xx0之间的平均变化率;如果极限xxfxxfxyxx)()(limlim0000存在,则称函数)(xfy在点0x处可导,并把这个极限叫做)(xfy在0x处的导数,记作)(0'xf或0|'xxy,即)(0'xf=xxfxxfxyxx)()(limlim0000.注:①x是增量,我们也称为“改变量”,因为x可正,可负,但不为零.②以知函数)(xfy定义域为A,)('xfy的定义域为B,则A与B关系为BA.2.函数)(xfy在点0x处连续与点0x处可导的关系:⑴函数)(xfy在点0x处连续是)(xfy在点0x处可导的必要不充分条件.可以证明,如果)(xfy在点0x处可导,那么)(xfy点0x处连续.事实上,令xxx0,则0xx相当于0x.于是)]()()([lim)(lim)(lim0000000xfxfxxfxxfxfxxxx).()(0)()(limlim)()(lim)]()()([lim000'0000000000xfxfxfxfxxfxxfxfxxxfxxfxxxx⑵如果)(xfy点0x处连续,那么)(xfy在点0x处可导,是不成立的.例:||)(xxf在点00x处连续,但在点00x处不可导,因为xxxy||,当x>0时,1xy;当x<0时,1xy,故xyx0lim不存在.注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.导数导数的概念导数的运算导数的应用导数的几何意义、物理意义函数的单调性函数的极值函数的最值常见函数的导数导数的运算法则3.导数的几何意义:函数)(xfy在点0x处的导数的几何意义就是曲线)(xfy在点))(,(0xfx处的切线的斜率,也就是说,曲线)(xfy在点P))(,(0xfx处的切线的斜率是)(0'xf,切线方程为).)((0'0xxxfyy4.求导数的四则运算法则:''')(vuvu)(...)()()(...)()(''2'1'21xfxfxfyxfxfxfynn''''''')()(cvcvvccvuvvuuv(c为常数))0(2'''vvuvvuvu注:①vu,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如:设xxxf2sin2)(,xxxg2cos)(,则)(),(xgxf在0x处均不可导,但它们和)()(xgxfxxcossin在0x处均可导.5.复合函数的求导法则:)()())(('''xufxfx或xuxuyy'''复合函数的求导法则可推广到多个中间变量的情形.6.函数单调性:⑴函数单调性的判定方法:设函数)(xfy在某个区间内可导,如果)('xf>0,则)(xfy为增函数;如果)('xf<0,则)(xfy为减函数.⑵常数的判定方法;如果函数)(xfy在区间I内恒有)('xf=0,则)(xfy为常数.注:①0)(xf是f(x)递增的充分条件,但不是必要条件,如32xy在),(上并不是都有0)(xf,有一个点例外即x=0时f(x)=0,同样0)(xf是f(x)递减的充分非必要条件.②一般地,如果f(x)在某区间内有限个点处为零,在其余各点均为正(或负),那么f(x)在该区间上仍旧是单调增加(或单调减少)的.7.极值的判别方法:(极值是在0x附近所有的点,都有)(xf<)(0xf,则)(0xf是函数)(xf的极大值,极小值同理)当函数)(xf在点0x处连续时,①如果在0x附近的左侧)('xf>0,右侧)('xf<0,那么)(0xf是极大值;②如果在0x附近的左侧)('xf<0,右侧)('xf>0,那么)(0xf是极小值.也就是说0x是极值点的充分条件是0x点两侧导数异号,而不是)('xf=0①.此外,函数不可导的点也可能是函数的极值点②.当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①:若点0x是可导函数)(xf的极值点,则)('xf=0.但反过来不一定成立.对于可导函数,其一点0x是极值点的必要条件是若函数在该点可导,则导数值为零.例如:函数3)(xxfy,0x使)('xf=0,但0x不是极值点.②例如:函数||)(xxfy,在点0x处不可导,但点0x是函数的极小值点.8.极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义.9.几种常见的函数导数:I.0'C(C为常数)xxcos)(sin'2'11)(arcsinxx1')(nnnxx(Rn)xxsin)(cos'2'11)(arccosxxII.xx1)(ln'exxaalog1)(log'11)(arctan2'xxxxee')(aaaxxln)('11)cot(2'xxarcIII.求导的常见方法:①常用结论:xx1|)|(ln'.②形如))...()((21naxaxaxy或))...()(())...()((2121nnbxbxbxaxaxaxy两边同取自然对数,可转化求代数和形式.③无理函数或形如xxy这类函数,如xxy取自然对数之后可变形为xxylnln,对两边求导可得xxxxxyyxyyxxxyylnln1ln'''.导数知识点总结复习经典例题剖析考点一:求导公式。例1.()fx是31()213fxxx的导函数,则(1)f的值是。考点二:导数的几何意义。例2.已知函数()yfx的图象在点(1(1))Mf,处的切线方程是122yx,则(1)(1)ff。例3.曲线32242yxxx在点(13),处的切线方程是。点评:以上两小题均是对导数的几何意义的考查。考点三:导数的几何意义的应用。例4.已知曲线C:xxxy2323,直线kxyl:,且直线l与曲线C相切于点00,yx00x,求直线l的方程及切点坐标。点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。考点四:函数的单调性。例5.已知1323xxaxxf在R上是减函数,求a的取值范点评:本题考查导数在函数单调性中的应用。对于高次函数单调性问题,要有求导意识。考点五:函数的极值。例6.设函数32()2338fxxaxbxc在1x及2x时取得极值。(1)求a、b的值;(2)若对于任意的[03]x,,都有2()fxc成立,求c的取值范围。点评:本题考查利用导数求函数的极值。求可导函数xf的极值步骤:①求导数xf';②求0'xf的根;③将0'xf的根在数轴上标出,得出单调区间,由xf'在各区间上取值的正负可确定并求出函数xf的极值。考点六:函数的最值。例7.已知a为实数,axxxf42。求导数xf';(2)若01'f,求xf在区间2,2上的最大值和最小值。点评:本题考查可导函数最值的求法。求可导函数xf在区间ba,上的最值,要先求出函数xf在区间ba,上的极值,然后与af和bf进行比较,从而得出函数的最大最小值。考点七:导数的综合性问题。例8.设函数3()fxaxbxc(0)a为奇函数,其图象在点(1,(1))f处的切线与直线670xy垂直,导函数'()fx的最小值为12。(1)求a,b,c的值;(2)求函数()fx的单调递增区间,并求函数()fx在[1,3]上的最大值和最小值点评:本题考查函数的奇偶性、单调性、二次函数的最值、导数的应用等基础知识,以及推理能力和运算能力。

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功