v1.0可编辑可修改11万有引力定律人造地球卫星夯实基础知识1.开普勒行星运动三定律简介(轨道、面积、周期定律)丹麦开文学家开普勒信奉日心说,对天文学家有极大的兴趣,并有出众的数学才华,开普勒在其导师弟谷连续20年对行星的位置进行观测所记录的数据研究的基楚上,通过四年多的刻苦计算,最终发现了三个定律。第一定律:所有行星都在椭圆轨道上运动,太阳则处在这些椭圆轨道的一个焦点上;第二定律:行星沿椭圆轨道运动的过程中,与太阳的连线在单位时间内扫过的面积相等;第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.即kTr23开普勒行星运动的定律是在丹麦天文学家弟谷的大量观测数据的基础上概括出的,给出了行星运动的规律。2.万有引力定律及其应用(1)内容:宇宙间的一切物体都是相互吸引的,两个物体间的引力大小跟它们的质量成积成正比,跟它们的距离平方成反比,引力方向沿两个物体的连线方向。2rMmGF(1687年)2211/1067.6kgmNG叫做引力常量,它在数值上等于两个质量都是1kg的物体相距1m时的相互作用力,1798年由英国物理学家卡文迪许利用扭秤装置测出。万有引力常量的测定——卡文迪许扭秤实验原理是力矩平衡。实验中的方法有:力学放大(借助于力矩将万有引力的作用效果放大)光学放大(借助于平面境将微小的运动效果放大)万有引力常量的测定使卡文迪许成为“能称出地球质量的人”:对于地面附近的物体m有:2ERMmGmgv1.0可编辑可修改22或GM=R2g式中RE为地球半径或物体到地球球心间的距离可得到:GgRM2(2)定律的适用条件严格地说公式只适用于质点间的相互作用。当两个物体间的距离远远大于物体本身的大小时,公式可近似使用,此时r应为两物体重心间的距离.对于均匀的球体,r是两球心间的距离.当两个物体间距离无限靠近时,不能视为质点,定律不再适用,不能依公式算出F近为无穷大。注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一,式中引力恒量G的物理意义是:G在数值上等于质量均为1kg的两个质点相距1m时相互作用的万有引力.(3)地球自转对地表物体重力的影响重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,如图所示,在纬度为的地表处,万有引力的一个分力充当物体随地球一起绕地轴自转所需的向心力F向=mRcos·ω2(方向垂直于地轴指向地轴),而万有引力的另一个分力就是通常所说的重力mg,其方向与支持力N反向,应竖直向下,而不是指向地心。由于纬度的变化,物体做圆周运动的向心力F向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g随纬度变化而变化,从赤道到两极R逐渐减小,向心力mRcos·ω2减小,重力逐渐增大,相应重力加速度g也逐渐增大。在赤道处,物体的万有引力分解为两个分力F向和m2g刚好在一条直线上,则有F=F向+m2g,OO′NF心ωmF引mg甲v1.0可编辑可修改33所以m2g=F一F向=G221rmm-m2Rω自2物体在两极时,其受力情况如图丙所示,这时物体不再做圆周运动,没有向心力,物体受到的万有引力F引和支持力N是一对平衡力,此时物体的重力mg=N=F引。综上所述重力大小:两个极点处最大,等于万有引力;赤道上最小,其他地方介于两者之间,但差别很小。重力方向:在赤道上和两极点的时候指向地心,其地方都不指向地心,但与万有引力的夹角很小。由于地球自转缓慢,物体需要的向心力很小,所以大量的近似计算中忽略了自转的影响,在此基础上就有:地球表面处物体所受到的地球引力近似等于其重力,即2RGmM≈mg说明:由于地球自转的影响,从赤道到两极,重力的变化为千分之五;地面到地心的距离每增加一千米,重力减少不到万分之三,所以,在近似的计算中,认为重力和万有引力相等。万有引力定律的应用基本方法:卫星或天体的运动看成匀速圆周运动F万=F心方法轨道上正常转:rTmrmrvmrMmG222224NωoF引丙NF引oω乙v1.0可编辑可修改44地面:G2RMm=mgGM=gR2(黄金代换式)(1)天体表面重力加速度问题设天体表面重力加速度为g,天体半径为R,由mg=2MmGR得g=2MGR由此推得两个不同天体表面重力加速度的关系为:21212212gRMgRM在地球的同一纬度处,g随物体离地面高度的增大而减小,即mgh=GMm/(R+h)2比较得gh=(hRR)2·g(2)利用卫星计算中心天体的质量某星体m围绕中心天体M做圆周运动的周期为T,圆周运动的轨道半径为r,则:由rTmrMmG222得中心天体的质量:2324GTrM例如:利用月球可以计算地球的质量,利用地球可以计算太阳的质量。可以注意到:环绕星体本身的质量在此是无法计算的。(3)计算中心天体的密度ρ=VM=334RM=3223RGTr可见,只要用实验方法测出卫星做圆周运动的半径r及运行周期T,就可以算出天体的质量M.若知道行星的半径则可得行星的密度v1.0可编辑可修改55(4)发现未知天体用万有引力去分析已经发现的星体的运动,可以知道在此星体附近是否有其他星体,例如:历史上海王星是通过对天王星的运动轨迹分析发现的。冥王星是通过对海王星的运动轨迹分析发现的。人造地球卫星这里特指绕地球做匀速圆周运动的人造卫星,实际上大多数卫星轨道是椭圆,而中学阶段对做椭圆运动的卫星一般不作定量分析。1、卫星的轨道平面:由于地球卫星做圆周运动的向心力是由万有引力提供的,所以卫星的轨道平面一定过地球球心,球心一定在卫星的轨道平面内。2、原理:由于卫星绕地球做匀速圆周运动,所以地球对卫星的引力充当卫星所需的向心力3、表征卫星运动的物理量:线速度、角速度、周期等:(1)向心加速度向a与r的平方成反比向a=2rGM当r取其最小值时,向a取得最大值:a向max=2RGM=g=9.8m/s2(2)线速度v与r的平方根成反比v=rGM∴当h↑,v↓当r取其最小值地球半径R时,v取得最大值:vmax=RGM=Rg=7.9km/s(3)角速度与r的三分之三次方成反比=3rGM∴当h↑,ω↓v1.0可编辑可修改66当r取其最小值地球半径R时,取得最大值:max=3RGM=Rg≈×10-3rad/s(4)周期T与r的二分之三次方成正比。T=2GMr3∴当h↑,T↑当r取其最小值地球半径R时,T取得最小值:Tmin=2GMR3=2gR≈84min(5)人造天体在运动过程中的能量关系(类似原子模型)同样质量的卫星在不同高度轨道上的机械能不同其中卫星的动能为rGMmmvEK2212由于重力加速度g随高度增大而减小,所以重力势能不能再用Ek=mgh计算要用到新的重力势能公式:rGMmEP以无穷远处引力势能为零,M为地球质量,m为卫星质量,r为卫星轨道半径。由于从无穷远向地球移动过程中万有引力做正功,所以系统势能减小,故为负机械能为rGMmEEEPK2同样质量的卫星,轨道半径越大,即离地面越高,卫星具有的机械能越大,发射越困难。当人造天体具有较大的初动能时,它将上升到较高的轨道运动,而在较高轨道上运动的人造天体却具有较小的动能。如果人造天体在运动中动能减小,它的轨道半径将减小,在这一过程中,因引力对其做正功,故导致其动能将增大。4.同步卫星(所有的通迅卫星都为同步卫星)同步卫星v1.0可编辑可修改77“同步”的含义就是和地球保持相对静止(又叫静止轨道卫星),其周期等于地球自转周期,既T=24h,特点(1)地球同步卫星的轨道平面非同步人造地球卫星其轨道平面可与地轴有任意夹角,而同步卫星一定位于赤道的正上方,不可能在与赤道平行的其他平面上。这是因为:不是赤道上方的某一轨道上跟着地球的自转同步地作匀速圆运动,卫星的向心力为地球对它引力的一个分力F1,而另一个分力F2的作用将使其运行轨道靠赤道,故此,只有在赤道上空,同步卫星才可能在稳定的轨道上运行。(2)地球同步卫星的周期:地球同步卫星的运转周期与地球自转周期相同(3)同步卫星必位于赤道上方h处,且h是一定的.rmrMmG22得23GMr故kmRrh35800(4)地球同步卫星的线速度:环绕速度由rmrMmG22得skmrGMv/08.3(5)运行方向一定自西向东运行应该熟记常识v1.0可编辑可修改88地球公转周期1年,自转周期1天=24小时=86400s,地球表面半径x103km,表面重力加速度g=9.8m/s2,月球公转周期27天宇宙速度及其意义(1)三个宇宙速度的值分别为第一宇宙速度(又叫最小发射速度、最大环绕速度、近地环绕速度):物体围绕地球做匀速圆周运动所需要的最小发射速度,又称环绕速度,其值为:km/s9.71v第一宇宙速度的计算.方法一:地球对卫星的万有引力就是卫星做圆周运动的向心力.G2hrmM=mhrv2,v=hrGM。当h↑,v↓,所以在地球表面附近卫星的速度是它运行的最大速度其大小为r>>h(地面附近)时:1GMVr=7.9×103m/s方法二:在地面附近物体的重力近似地等于地球对物体的万有引力,重力就是卫星做圆周运动的向心力.21vmgmrh当r>>h时.gh≈g所以v1=gr=7.9×103m/s第二宇宙速度(脱离速度):如果卫生的速大于km/s9.7而小于km/s2.11,卫星将做椭圆运动当卫星的速度等于或大于km/s2.11的时候,物体就可以挣脱地球引力的束缚,成为绕太阳运动的人造行星,或飞到其它行星上去,把km/s2.112v叫做第二宇宙速度第二宇宙速度是挣脱地球引力束缚的最小发射速度。第三宇宙速度:v1.0可编辑可修改99物体挣脱太阳系而飞向太阳系以外的宇宙空间所需要的最小发射速度,又称逃逸速度,其值为:km/s7.163v(2)当发射速度v与宇宙速度分别有如下关系时,被发射物体的运动情况将有所不同①当v<v1时,被发射物体最终仍将落回地面;②当v1≤v<v2时,被发射物体将环绕地球运动,成为地球卫星;③当v2≤v<v3时,被发射物体将脱离地球束缚,成为环绕太阳运动的“人造行星”;④当v≥v3时,被发射物体将从太阳系中逃逸。题型解析类型题1:万有引力定律的直接应用【例题】下列关于万有引力公式221rmmGF的说法中正确的是(C)A.公式只适用于星球之间的引力计算,不适用于质量较小的物体B.当两物体间的距离趋近于零时,万有引力趋近于无穷大C.两物体间的万有引力也符合牛顿第三定律D.公式中万有引力常量G的值是牛顿规定的【例题】设想把质量为m的物体,放到地球的中心,地球的质量为M,半径为R,则物体与地球间的万有引力是(C)A.2RGMmB.无穷大C.零D.无法确定【例题】设想人类开发月球,不断地把月球上的矿藏搬运到地球上.假如经过长时间开采后,地球仍可看成均匀球体,月球仍沿开采前的圆轨道运动则与开采前比较A.地球与月球间的万有引力将变大B.地球与月球间的万有引力将减小C.月球绕地球运动的周期将变长v1.0可编辑可修改1010D.月球绕地球运动的周期将变短★解析:设地球和月球的质量分别为M、m,它们之间的引力为2rMmGF,由于地球和月球M+m是一常数,根据数学知识,当M=m时,M·m取最大值,M、m相差越多,M·m越小,2rMmGF越小。地球比月球的质量大,还要把月球上的矿藏搬运到地球上,就使得M,m相差更多,所以M·m就越小,2rMmGF越小。答案:B、D类型题2:重力加速度g随离高度h变化情况表面重力加速度:2002RGMgmgRMmG轨道重力加速度:222221RhghRgRhRGMgmghRGMmhh【例题】设地球表面的重力加速度为g,物体在距地心4R(R是地球半径)处,由于地球的引力作用而产生的重力加速度g,,则g/g,为(D)A、1:2B、1/9;C、1/4;D、1/16解析:因为g=G2RM