新课标人教版六年级下册数学教案全集-(带三维目标)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第一单元负数【教学目标】知识与技能、在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。过程与方法、初步学会用负数表示一些日常生活中的实际问题。情感态度价值观、能借助数轴初步理解正数、0和负数之间的关系。【重点难点】负数的意义和数轴的意义及画法。【课时安排】建议共分3课时:负数的初步认识2课时在数轴上表示正数、0和负数1课时第1课时负数的初步认识(1)【教学内容】负数的初步认识(教材第2页例1)。【教学目标】结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。【重点难点】体会负数的重要性。【教学准备】多媒体课件。教学过程:一、【情景导入】1、.教师利用课件向学生展示教材第2页主题图。(、2、.引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么?0℃代表什么意思?-3℃和3℃各代表什么意思?)引出课题并板书:负数的初步认识(1)二、【新课讲授】教学教材第2页例1。1、教师板书关键数据:0℃。2、教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,通常在数字前加“-”(负号):如-3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。3、我们来看一下课本上的图,你知道北京的气温吗?最高气温和最低气温都是多少呢?随机点同学回答。4、刚刚同学回答得很对,读法也很正确。5、了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢?用手势告诉大家好吗?学生讨论合作,交流反馈。6、请同学们把图上其它各地的温度都写出来,并读一读。7、教师展示学生不同的表示方法。(8)小结:通过刚才的学习,我们用“+”和“-”就能准确地表示零上温度和零下温度。四、【课堂作业】完成教材第4页的“做一做”第1题。组织学生独立完成,指名回答。答案:-18℃温度低。五、【课堂小结】这节课我们一起认识了正数和负数。在我们的生活中,零摄式度以上和零摄式度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。六、【课后作业】完成练习册中本课时的练习。教学板书:第1课时负数的初步认识(1)第2课时负数的初步认识(2)【教学内容】负数的初步认识(2)(教材第3页例2)。【教学目标】通过呈现存折上的明确数据,让学生体会负数在生活中的广泛应用,进一步体会负数的含义。【重点难点】体会引入负数的必要性,初步理解负数的含义。【教学准备】多媒体课件。教学过程一、【情景导入】教师:上一节课我们已经一起学习了气温的表示,谁能说一说温度都是怎样读写的?组织学生讨论回忆上一课内容。师:很好,大家都很棒。今天我们继续学习负数知识。引出课题并板书:负数的初步认识(2)二、【新课讲授】1、教学例2。(1)课件出示存折明细示意图。(教材第3页的主题图)教师:同学们能说说“支出(-)或(+)”这一栏的数各表示什么意义吗?组织学生分组讨论、交流,然后指名汇报。(2)引导学生归纳总结:像2000,500这样的数表示的是存入的钱数;而前面有“-”号的数,像-500,-132这样的数表示的是支出的钱数。(3)教师:上述数据中500和-500意义相同吗?(500和-500意义相反,一个是存入,一个是支出)。你能用刚才的方法快速而又准确地表示出向东走100m和向西走200m、前进20步和后退25步吗?说说你是怎么表示的?师把学生的表示结果一一板书在黑板上。2、归纳正数和负数。(1)你能把黑板上板书的这些数进行分类吗?小组讨论交流。(2)教师展示分类的结果,适时讲解。像+8,+4,+2000,+500,+100,+20这样的数,我们把它们叫做正数,前面的+号也可以省略不写。像-8,-4,-500,-20这样的数,我们把它叫做负数。(3)那么0应该归为哪一类呢?组织学生讨论,相互发表意见。师设难:“我认为0应该归为正数一类。”归纳:0既不是正数也不是负数,它是正数和负数的分界点。(4)你在什么地方见过负数?教师鼓励学生注意联系实际举出更多的例子。三、【课堂作业】完成教材第4页的“做一做”第2题。组织学生动手填一填,在小组中交流检查。答案:正数有:2.5+45+41负数有:-7-5.213四、【课堂小结】通过这节课的学习,你有什么收获?五、【课后作业】完成练习册中本课时的练习。板书第2课时负数的初步认识(2)正数:+8负数:-8+4-4+2000-2000+500-500+100-100+20-200既不是正数也不是负数。第3课时在数轴上表示正数、0和负数【教学内容】借助数轴理解正数和负数的意义(教材第5页例3)。【教学目标】1、借助数轴初步理解正数、0、负数。2、初步体会数轴上数的顺序,完成对数的结构的初步构建以及正数与负数的比较。【重点难点】认识数轴、0。【教学准备】多媒体课件。教学过程一、【情景导入】教师用课件演示教材第5页的主题图。教师:如何在一条直线上表示出他们运动后的情况呢?二、【新课讲授】教学例3。1、教师:怎样用数来表示这些学生和大树的相对位置关系呢?组织学生在小组中议一议,然后汇报。2、教师结合学生的汇报,用课件出示数轴,在相应点的下方标出对应的数。3、让学生说出直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。4、教师总结:我们可以在直线上表示出正数、0、负数,像这样的直线我们叫做数轴。5、引导学生观察数轴(1)从0起往右依次是?从0起往左依次是?你发现什么规律?(2)在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?师及时小结,数轴除了可以表示整数,还可以表示小数、分数。每个数都能在数轴上找到它们相对应的点。三、【课堂作业】1、完成教材第5页的“做一做”。学生独立练习,指名汇报。2、完成教材第6页练习一的第4题。第4题组织学生独立完成,并在小组中相互交流、检查。教师用课件出示答案、订正。3、第4题:点A表示的数是-7;点B表示的数是-4;点C表示的数是-1;点D表示的数是3;点E表示的数是6。四、【课堂小结】通过这节课的学习,你有什么收获?1、在数轴上,从左到右的顺序就是数从小到大的顺序。2、负数比0小,正数比0大,负数比正数小。五、【课后作业】完成练习册中本课时的练习。板书第3课时在数轴上表示正数、0和负数上面这样的直线叫做数轴。反思第二单元百分数(二)【教学目标】知识与技能、理解折扣、成数、税率、利率的含义,知道它们在生活中的简单应用,会进行这方面的简单计算。过程与方法、在理解、分析数量关系的基础上,使学生能正确地回答有关百分数的问题。情感态度价值观:知道它们在生活中的简单应用,会进行这方面的简单计算。【重点难点】利用百分数解决实际问题。【课时安排】建议共分5课时:折扣1课时成数1课时税率1课时利率1课时解决问题1课时第1课时折扣【教学内容】折扣(教材第8页的内容,练习二第1~3题)。【教学目标】1、明确折扣的含义。2、能熟练地把折扣写成分数、百分数。3、正确解答有关折扣的实际问题。4、学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。【重点难点】1、会解答有关折扣的实际问题。2、合理、灵活地选择方法,解答有关折扣的实际问题。【教学准备】多媒体课件。一、【情景导入】圣诞节期间各商家搞了哪些促销活动?谁来说说他们是怎样进行促销的?(学生汇报调查情况。)二、【新课讲授】1、教学折扣的含义,会把折扣改写成百分数。(1)刚才大家调查到的打折是商家常用的手段,是一个商业用语,那么你所调查到的打折是什么意思呢?比如说打“七折”,你怎么理解?(2)你们举的例子都很好,老师也搜集到某商场打七折的售价标签。(课件展示)①大衣,原价:1000元,现价:700元。②围巾,原价:100元,现价:70元。③铅笔盒,原价:10元,现价:?④橡皮,原价:1元,现价:?(3)动脑筋想一想:如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?如果原价是1元的橡皮,打七折,现价又是多少?(4)仔细观察,商品在打七折时,原价与现价有一个什么样的关系?带着这样的问题,可以利用计算器,也可以借助课本,四人小组一起试着找到答案。(5)讨论,找规律。A.学生动手操作、计算,并在计算或讨论中发现规律。B.学生汇报寻找的方法:利用计算器,原价乘以70%恰好是标签的售价或现价除以原价大约都是70%;或查书等等。(6)归纳,得定义。A.通过小组讨论,谁能说说打七折是什么意思?打八折是什么意思?打八五折呢?B.概括地讲,打折是什么意思?如果用分母是十的分数,该怎样表示?(“几折”就是十分之几,也就是百分之几十)C.通俗来讲,商店有时降价出售商品,叫做打折扣销售,通称“打折”。几折就是十分之几,也就是百分之几十。如八五折就是85%,九折就是90%。一般情况下,不把折扣写成十分之几这样的分数形式,写成分数时,有时会出现小数(例如八五折就会写成8.510),不便于计算和理解。(7)讨论:如果你买的打折商品是伪劣产品时,可以向相关部门投诉吗?教师相机介绍《中华人民共和国消费者权益保护法》第八条消费者享有知悉其购买、使用的商品或者接受的服务的真实情况的权利。消费者有权根据商品或者服务的不同情况,要求经营者提供商品的价格、产地、生产者、用途、性能、规格、等级、主要成分,生产日期、有效期限、检验合格证明、使用方法说明书、售后服务,或者服务的内容、规格、费用等有关情况。(8)练习。①四折是十分之(),改写成百分数是()。②六折是十分之(),改写成百分数是()。③七五折是十分之(),改写成百分数是()。④九二折是十分之(),改写成百分数是()。2、运用折扣含义解决实际问题。课件出示问题(1):爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?①导学生分析题意:打八五折怎么理解?是以谁为单位“1”?②找出数量关系式。先让学生找出单位“1”,然后再找出数量关系式:原价×85%=实际售价③学生独立根据数量关系式,列式解答。④班交流。根据学生的汇报,板书:180×85%=153(元)答:买这辆车用了153元。出示问题(2):爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?①导学生理解题意:只花了九折的钱怎么理解?以谁为单位“1”?②学生试算,独立列式。③全班交流。根据学生的汇报,板书:第一种算法:原价160元,减去现价,就是比原价便宜多少钱。160-160×90%=160-144=16(元)第二种算法:原价160元,现价比原价便宜了(1-90%)。160×(1-90%)=160×10%=16(元)重点引导学生理解第二种算法,知道现价比原价便宜了10%。3、典例讲析。例在某商店促销活动时,原价800元的某品牌自行车九折出售,最后剩下的几辆车,商家再次打八折出售,最后的几辆车售价多少元?分析:原价800元,第一次打九折出售,价格是原价的90%,再次打八折出售,价格是第一次打九折后的80%。可以先求出第一次打折后的价格,再求出第二次打折后的价格,即为现在的售价。解:800×90%×80%=720×80%=576(元)答:最后的几辆车售价是576元。三、【课堂作业】1、(1)爸爸买了一个剃须刀,原价240元,现在只花了八折的钱,比原价便宜了多少钱?A.打八折怎么理解?是以谁为单位“1”?B.学生试做,讲评。(2)判断:①商品打折扣都是以原商品价格为单位“1”,即标准量。()②一件上衣现在打八折出售,就是说比原价降低10%。()2、完成教材第8页“做一做”练习题。3、完成教材第13页练习二第1~3题。说明:第1题是一道开放题,有多种可能,应注意给学生提供交流自己想法的机会。练习后可指出“五折”也可以说成“半价”,丰富学生的生活经验。第2题,要注意指导学生理解9.6元表示的实际含义,它与八折有什么关系。使学生明确9.6元就是打折后比原价少的钱数,它相当于原价的1—80%,在此基

1 / 151
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功