12.2一次函数的概念问题1丽丽准备将平时的零用钱节约一些储存起来.她已存有50元,从现在起每个月节存12元.试写出丽丽的存款数与从现在开始的月份数之间的函数关系式.分析设从现在开始的月份数为x,丽丽的存款数为y元,得到所求的函数关系式为y=_______________50+12x小明暑假第一次去北京.汽车驶上A地的高速公路后,小明观察里程碑,发现汽车的平均速度是95千米/时.已知A地直达北京的高速公路全程570千米,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.问题2分析我们知道汽车距北京的路程随着行车时间而变化.要想找出这两个变化着的量的关系,并据此得出相应的值,显然,应该探究这两个量之间的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,则不难得到s与t的函数关系式是s=570-95t细心观察:⑴c=7t-35(3)y=0.01x+22(2)G=h-1051、在这些函数关系式中,是关于自变量的几次式?2、关于x的一次式的一般形式是什么?(4)y=-5x+50(5)y=0.5x+3(6)y=-6x+52.y=kx+b分析:1.是关于自变量的一次式.概括上述函数的解析式都是用自变量的一次整式表示的,我们称它们为一次函数.一次函数通常可以表示为y=kx+b的形式,其中k、b是常数,k≠0.特别地,当b=0时,一次函数y=kx(常数k≠0)也叫做正比例函数.正比例函数是一种特殊的一次函数.一次函数定义它是一次函数.它不是一次函数.它是一次函数,也是正比例函数.它是一次函数.它不是一次函数.它是一次函数.下列函数中,哪些是一次函数(1)y=-3X+7(2)y=6X2-3X(3)y=8X(4)y=1+9X(5)y=(6)y=-0.5x-1x8巩固概念xy11.已知下列函数:y=2x+1;xxy21;s=60t;y=100-25x,其中表示一次函数的有()(A)1个(B)2个(C)3个(D)4个D2.要使y=(m-2)xn-1+n是关于x的一次函数,n,m应满足,.n=2m≠23.下列说法不正确的是()(A)一次函数不一定是正比例函数(B)不是一次函数就一定不是正比例函数(C)正比例函数是特定的一次函数(D)不是正比例函数就不是一次函数D4.若函数y=(m-1)x|m|+m是关于x的一次函数,试求m的值.1.已知函数y=(m+1)x+(m2-1),当m取什么值时,y是x的一次函数?当m取什么值时,y是x的正比例函数?应用拓展解:(1)因为y是x的一次函数所以m+1≠0m≠-12)因为y是x的正比例函数所以(m2-1=0m=1或-1又因为m≠-1所以m=12.已知函数y=(k-2)x+2k+1,若它是一次函数,求k的取值范围;若它是正比例函数,求k的值.解:若y=(k-2)x+2k+1是正比例函数则k=-122k+1=0,k-2≠0,解得若y=(k-2)x+2k+1是一次函数则k-2≠0,即k≠23.已知y与x-3成正比例,当x=4时,y=3.(1)写出y与x之间的函数关系式;(2)y与x之间是什么函数关系式;(3)求x=2.5时,y的值解:(1)∵y与x-3成正比例∴可设y=k(x-3)又∵当x=4时,y=3∴3=k(4-3)解得k=3∴y=3(x-3)=3x-9(2)y是x的一次函数;(3)当x=2.5时,y=3×2.5-9=-1.5(k≠0)4.已知A、B两地相距30千米,B、C两地相距48千米,某人骑自行车以每小时12千米的速度从A地出发,经过B地到达C地.设此人骑车时间为x(时)离B地距离为y(千米).(1)当此人在A、B两地之间时,求y与x之间的函数关系式及自变量x的取值范围;(2)当此人在B、C两地之间时,求y与x之间的函数关系式及自变量x的取值范围;(1)y=30-12x,(0≤x≤2.5)(2)y=12x-30,(2.5≤x≤6.5)略解:分析:5.某油库有一没储油的储油罐,在开始的8分钟内,只开进油管,不开出油管,油罐进油至24吨后,将进油管和出油管同时打开16分钟,油罐中的油从24吨增至40吨.随后又关闭进油管,只开出油管,直至将油罐内的油放完.假设在单位时间内进油管与出油管的流量分别保持不变.写出这段时间内油罐的储油量y(吨)与进出油时间x(分)的函数式及相应的x取值范围.(1)在第一阶段:(0≤x≤8)24÷8=3解:分析:∴y=3x(0≤x≤8)5.某油库有一没储油的储油罐,在开始的8分钟内,只开进油管,不开出油管,油罐进油至24吨后,将进油管和出油管同时打开16分钟,油罐中的油从24吨增至40吨.随后又关闭进油管,只开出油管,直至将油罐内的油放完.假设在单位时间内进油管与出油管的流量分别保持不变.写出这段时间内油罐的储油量y(吨)与进出油时间x(分)的函数式及相应的x取值范围.(2)在第二阶段:(8≤x≤8+16)设每分钟放出油m吨,解:∴y=24+(3-2)(x-8)(8≤x≤24)则16×3-16m=40-24m=2即y=16+x5.某油库有一没储油的储油罐,在开始的8分钟内,只开进油管,不开出油管,油罐进油至24吨后,将进油管和出油管同时打开16分钟,油罐中的油从24吨增至40吨.随后又关闭进油管,只开出油管,直至将油罐内的油放完.假设在单位时间内进油管与出油管的流量分别保持不变.写出这段时间内油罐的储油量y(吨)与进出油时间x(分)的函数式及相应的x取值范围.(3)在第三阶段:40÷2=20解:∴y=40-2(x-24)(24≤x≤44)24+20=44即y=-2x+88小结函数的解析式是用自变量的一次整式表示的,我们称它们为一次函数.一次函数通常可以表示为y=kx+b的形式,其中k、b是常数,k≠0.正比例函数也是一次函数,它是一次函数的特例.特别地,当b=0时,一次函数y=kx(常数k≠0)也叫做正比例函数.作业P4712