“拍照赚钱”类软件任务定价规律的探讨与改良方案分析摘要随着互联网技术的发展,人们在经济水平飞速发展的同时,各种观念也在不断变化;例如互联网技术已通过其庞大的用户量及强大的执行效率使得许多曾需要专人投入大量成本的传统行业趋于大众化、分散化。例如最近市场上新兴的“拍照赚钱”软件,它利用人们的零散时间随时随地拍照赚钱,备受大众青睐。然而该类软件仍然存在定价不合理、任务完成度不高等阻碍该类软件发展的瓶颈。本文通过对客户与任务位置、完成任务收益等变量进行数学模型分析,提出了一些比该类软件现行运作模式更科学、更高效的方案。第一问中,为确定现有定价方案的问题,我们以任务分配范围内不同的城区作为基本单位,将任务根据定价分为三份,并通过建立线性回归方程了解了各客观变量对定价产生的影响,再通过对失败案例的因子分析找到了导致失败的变量及它们对失败变量的影响程度。第二问设计新方案时,以为拍照赚钱平台带来最大利润为根本目的,将现有方案与变量间相互作用情况相似的垄断性市场中打车平台收费方案进行类比,分析并一一对应相应的变量关系,再通过现有的对打车平台获利最大值计算的模型变量的类比得出新方案。第三问中,通过聚类分析可以将5个相聚较近的变量进行“打包”。“打包”的点即为包点,将其代入第一问中地址相关信息,可求出打包后每个地区所具有的“包点”的个数,再由第二问公式问求出定价,并与原始结果进行对照。第四问中,将所给密集数据视为在同一点进行“打包”,求出打包结果所在点的GPS并代入第一问中的值关键词:自然区域分区、多项线形回归预测、因子分析、类比、CurveFittingTool、聚类分析、一、问题重述随着科技日新月异的发展,人们获取钱财的方法越来越多,“众包”一词也出现在大众视野。众包指的是一个公司或机构把过去由员工执行的工作任务,以自由自愿的形式外包给非特定(而且通常是大型的)大众网络的做法。众包的任务通常是由个人来承担,但如果涉及到需要多人协作完成的任务,也有可能依靠开源的个体生产的形式出现。其中,“拍照赚钱”是一股热流,它能及时反映商家想要了解的问题以及随时发布或更新任务,用户只需登录手机客户端,找到适合自己的差事,按要求按时完成,就能获得相应的酬金。但是,“拍照赚钱”也存在着许多问题,例如有些任务的位置与任务完成难度直接相关,部分易于完成的任务会被“争抢”,而另一些任务就因位置不太合适或时间点比较不妥就导致接单比较少。而且,任务的定价也和位置,时间等因素有关,然后这也影响到了接单率。分析任务定价规律,如何设置合适的任务定价方案来提高任务的完成率;在实际中,因为用户分布比较密集导致的任务被争抢而实行将一些任务联合在一起打包发布时,如何修改定价模型以及修改后会对任务完成情况造成什么后果,这些问题都是我们要思考并解决的。这些问题一旦被解决之后,对商家,平台以及用户,都是一种更好的体验感受,也能更大限度的发挥出该软件的作用。二、问题分析第一问中,由题意可知,所给条件内可能与价格分布有关的仅有由经纬度确定的地理位置情况与会员的密度等相关变量。此时可假设其中一个变量为影响价格的唯一因素,并进行拟合运算。若成功,则以该方案进行运算;若失败,即将所有变量作为拟合元素进行计算,求出影响定价因素,并用因子分析求出失败率。第二问中,重新分配定价的根本目的是给予平台方更大的利益。这里可以采用类比的方法,将拍照赚钱平台的各个变量与市场上已广泛使用的出租车打车软件的各项变量进行类比,并得出适用于现有模型的求定价方案。第三问中,通过分析的5个点的相关位置信息求均值,并将5个点的对应属性(经纬度、价格分配等)的总和视为一个“较大”的点,可求出多个点共同作用在区域中分布情况。第四问将所给点数代入前问所求出的多种解析方法,寻找最优解并根据数据分布特色做出最合适的解析方案。三、模型假设1.假设同一之间题中会员所在地域(深圳、佛山、东莞、广州等地)的气候条件基本相同,气候差异不会对会员的任务完成情况产生实质性影响。2.假设会员会以效率优先的原则选择最近的拍照地点,不倾向于在任务充足时刻意绕远路或进入其他城区进行拍摄。3.假设会员完成任务能力彼此间差异较小可忽略4.假设同一城市不同区之间的发展状况差异小于不同城市间发展状况差异5.假设会员对完成任务的积极性相对稳定,一片区域内题中所给任务的完成与否可以体现出该区域会员的积极程度四、符号说明Ppt:平台获得最大利润的定价fd:单位地区内平均价格O:聚类分析后单位地区定价d:会员接取可做任务的概率td:接取任务时间范围np:任务数量五、模型的建立与求解5.1.1影响任务标价主要因素的确认在附件1中,我们可知835个位置不同的任务的标价与其完成情况。对题干进行分析可知,所给条件下能够影响任务定价规律的客观因素仅有任务所在的位置以及与可完成其的会员相关情况。假设任务标价仅与其所在位置(即经纬度)存在联系。以表1中数据经度与纬度作为因变量,可得仅经纬度一项因素与任务价格分布相关关系:VariablesEntered/RemovedaModelVariablesEnteredVariablesRemovedMethod1任务gps纬度,任务gps经度b.Entera.DependentVariable:任务标价b.Allrequestedvariablesentered.ModelSummarybModelRRSquareAdjustedRSquareStd.ErroroftheEstimate1.167a.028.0253.331a.Predictors:(Constant),任务gps纬度,任务gps经度b.DependentVariable:任务标价分析结果显示,该模型在分析价格变化时可用的情况仅占16.7%,不足以证明单纯的经纬度差异与价格变化存在直接相关。由此可见,任务的定价规律与会员的分布、当地会员对任务总体完成情况以及会员信誉度等因素存在相关关系。任务的定价规律能直接影响任务的完成状况。为确认会员总体任务完成情况与任务定价范围差异之间的关系,我们根据人数的差异及奖励金变化的趋势将任务奖励金额分为了三个区间:[65,69.5],[70,75],[80,+∞],并使用XGeocoding软件求出了题中所给坐标范围内所包含的不同城区内每一个城区分布的会员人数、高信誉度会员人数相应的任务完成状况。实际情况如附件1所示:以每个区域内酬金为65至69.5元内成功完成的任务数量为因变量;该区域任务完成率、分配任务数、会员数及会员完成任务数比例为自变量,通过spss的线性回归方程功能,可建立任务量与各自变量的关系模型。结果为:模型摘要模型RR平方調整後R平方標準偏斜度錯誤1.923a.852.8318.007a.預測值:(常數),高信誉会员分布,分配任务数,会员数變異數分析a模型平方和df平均值平方F顯著性1迴歸7756.60232585.53440.328.000b殘差1346.3582164.112總計9102.96024a.應變數:65-69.5b.預測值:(常數),高信誉会员分布,分配任务数,会员数係數a模型非標準化係數標準化係數T顯著性B標準錯誤Beta1(常數)-4.0742.304-1.768.092会员数-.044.066-.198-.678.505分配任务数.574.0871.1146.631.000高信誉会员分布-.076.423-.040-.180.859a.應變數\:65-69.5表中数据显示,数据变异数显著性为0.00,适用于线性回归分析情况;且在任务酬金为65至69.5间时且在其对应区域时,模型对其分析的准确率达到92.4%。在模型范围内以各变量非标准化系数做出变量拟合方程为:P=-0.044m+0.574n-0.076h-4.074同理,酬金为70至75元任务与其相应因变量关系为:模型摘要模型RR平方調整後R平方標準偏斜度錯誤1.890a.792.7638.119a.預測值:(常數),高信誉会员分布,分配任务数,会员数變異數分析a模型平方和df平均值平方F顯著性1迴歸5279.78931759.93026.697.000b殘差1384.3712165.922總計6664.16024a.應變數:70-75b.預測值:(常數),高信誉会员分布,分配任务数,会员数係數a模型非標準化係數標準化係數T顯著性B標準錯誤Beta1(常數)-.7412.337-.317.754会员数.004.066.022.065.949分配任务数.537.0881.2186.117.000高信誉会员分布-.938.429-.581-2.185.040a.應變數\:70-75表中数据变异数显著性为0.00,适用于线性回归分析情况;在对应区域内任务酬金为70至75之间时,模型对其分析的准确率达到89%。其拟合方程为:P=0.004m+0.537n-0.938h-0.741酬金为80元及以上的任务与其相应因变量关系为:模型摘要模型RR平方調整後R平方標準偏斜度錯誤1.628a.394.3083.341a.預測值:(常數),高信誉会员分布,分配任务数,会员数變異數分析a模型平方和df平均值平方F顯著性1迴歸152.662350.8874.559.013b殘差234.3782111.161總計387.04024a.應變數:80以上b.預測值:(常數),高信誉会员分布,分配任务数,会员数係數a模型非標準化係數標準化係數T顯著性B標準錯誤Beta1(常數)-.475.961-.494.627会员数-.021.027-.447-.758.457分配任务数.107.0361.0022.948.008高信誉会员分布-.027.177-.070-.155.878a.應變數\:80以上上表中数据变异数显著性为0.13,可用于线性回归分析情况;且在任务酬金为80以上且在其对应区域时,模型对其分析的准确率为62.8%。对其中数据建立拟合方程为:P=-0.021m+0.107n-0.027h-0.7475综合上表中数据所述,可知影响定价的主要因素分别为。5.1.2任务未完成的原因分析因子分析的功能是在多个变量中找出隐藏的具有代表性的因子并将相同本质的变量归入一个因子,有检验变量间关系的功能。1.1.1中结论显示,影响任务完成情况的因素包括位置因素、价格因素与所在地会员相关因素。对每个区域的失败任务进行分析时,可用SPSS的因子分析功能分析出价格因素与会员数、高信誉会员分布情况和区域内任务完成率等变量中的每一项对确立失败结果所占影响的比重。结果如下:相關性矩陣失败率失败量会员数分配任务数平均收益高信誉会员分布相關失败率1.000.452.026-.250-.459.140失败量.4521.000.560.294-.462.653会员数.026.5601.000.857-.318.923分配任务数-.250.294.8571.000-.193.744平均收益-.459-.462-.318-.1931.000-.386高信誉会员分布.140.653.923.744-.3861.000表中数据显示,会影响失败率的变量中对失败率影响最大的是平均收益,其次是失败量,接下来是分配任务数、高信誉会员分布,最后是会员数。其中失败量是无法控制的变量,而其余变量除分配任务数与平均收益对失败率呈负相关以外,其余变量与失败率均呈正相关。由此可知,导致任务未完成的原因可能性由大到小分别为完成任务平均收益低、区域分配任务数过少、区域内会员信誉度高于己方,以及区域内存在过多会员与己方竞争。5.2附件一项目的新定价方案以“拍照赚钱”软件的角度考虑,最佳的定价方案无疑是该平台获得最大利润的情况。目前,“拍照赚钱”类为一名客户提供一对一服务机会的平台有很多,其中各变量要素与拍照赚钱软件平台相似度最高的是出租车APP平台;在垄断性市场中,相对静止的客户用户通过金钱根据题意,可将拍照赚钱系统类比为垄断型市场。其他公司以一定资金向拍照赚钱平台投送任务可类比为行人向平台缴纳注册费;用户以个数为单位完成平台分配的任务