实用文档文案大全模型一三角形等高模型已经知道三角形面积的计算公式:三角形面积底高2从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,高越大(小),三角形面积也就越大(小);如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的13,则三角形面积与原来的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.在实际问题的研究中,我们还会常常用到以下结论:①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;如图12::SSabbaS2S1DCBA③夹在一组平行线之间的等积变形,如右上图ACDBCDSS△△;反之,如果ACDBCDSS△△,则可知直线AB平行于CD.④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.三角形等高模型与鸟头模型实用文档文案大全【例1】你有多少种方法将任意一个三角形分成:⑴3个面积相等的三角形;⑵4个面积相等的三角形;⑶6个面积相等的三角形。【解析】⑴如下图,D、E是BC的三等分点,F、G分别是对应线段的中点,答案不唯一:CEDBAFCDBAGDCBA⑵如下图,答案不唯一,以下仅供参考:⑸⑷⑶⑵⑴⑶如下图,答案不唯一,以下仅供参考:【例2】如图,BD长12厘米,DC长4厘米,B、C和D在同一条直线上。⑴求三角形ABC的面积是三角形ABD面积的多少倍?⑵求三角形ABD的面积是三角形ADC面积的多少倍?【解析】因为三角形ABD、三角形ABC和三角形ADC在分别以BD、BC和DC为底时,它们的高都是从A点向BC边上所作的垂线,也就是说三个三角形的高相等。于是:三角形ABD的面积12高26高三角形ABC的面积124()高28高三角形ADC的面积4高22高所以,三角形ABC的面积是三角形ABD面积的43倍;三角形ABD的面积是三角形ADC面积的3倍。【例3】如右图,ABFE和CDEF都是矩形,AB的长是4厘米,BC的长是3厘米,那么图中阴影部分的面积是平方厘米。ABCDEF【解析】图中阴影部分的面积等于长方形ABCD面积的一半,即4326(平方厘米)。【巩固】(2009年四中小升初入学测试题)如图所示,平行四边形的面积是50平方厘米,则阴影部分的面积是平方厘米。CDBA实用文档文案大全【解析】根据面积比例模型,可知图中空白三角形面积等于平行四边形面积的一半,所以阴影部分的面积也等于平行四边形面积的一半,为50225平方厘米。【巩固】如下图,长方形AFEB和长方形FDCE拼成了长方形ABCD,长方形ABCD的长是20,宽是12,则它内部阴影部分的面积是。FEDCBA【解析】根据面积比例模型可知阴影部分面积等于长方形面积的一半,为120121202。【例4】如图,长方形ABCD的面积是56平方厘米,点E、F、G分别是长方形ABCD边上的中点,H为AD边上的任意一点,求阴影部分的面积。HGFEDCBAHGFEDCBA【解析】本题是等底等高的两个三角形面积相等的应用。连接BH、CH。∵AEEB,∴AEHBEHSS△△.同理,BFHCFHSS△△,S=SCGHDGH,∴11562822ABCDSS阴影长方形(平方厘米).【巩固】图中的E、F、G分别是正方形ABCD三条边的三等分点,如果正方形的边长是12,那么阴影部分的面积是。EDGCFBA654321HABFCGDE【解析】把另外三个三等分点标出之后,正方形的3个边就都被分成了相等的三段。把H和这些分点以及正方形的顶点相连,把整个正方形分割成了9个形状各不相同的三角形。这9个三角形的底边分别是在正方形的3个边上,它们的长度都是正方形边长的三分之一。阴影部分被分割成了3个三角形,右边三角形的面积和第1第2个三角形相等:中间三角形的面积和第3第4个三角形相等;左边三角形的面积和第5个第6个三角形相等。因此这3个阴影三角形的面积分别是ABH、BCH和CDH的三分之一,因此全部阴影的总面积就等于正方形面积的三分之一。正方形的面积是144,阴影部分的面积就是48。实用文档文案大全【例5】长方形ABCD的面积为362cm,E、F、G为各边中点,H为AD边上任意一点,问阴影部分面积是多少?HGFEDCBA【解析】解法一:寻找可利用的条件,连接BH、HC,如下图:HGFEDCBA可得:12EHBAHBSS、12FHBCHBSS、12DHGDHCSS,而36ABCDAHBCHBCHDSSSS即11()361822EHBBHFDHGAHBCHBCHDSSSSSS;而EHBBHFDHGEBFSSSSS阴影,11111()()364.522228EBFSBEBFABBC。所以阴影部分的面积是:18184.513.5EBFSS阴影解法二:特殊点法。找H的特殊点,把H点与D点重合,那么图形就可变成右图:GABCDEF(H)这样阴影部分的面积就是DEF的面积,根据鸟头定理,则有:11111113636363613.52222222ABCDAEDBEFCFDSSSSS阴影。【例6】长方形ABCD的面积为36,E、F、G为各边中点,H为AD边上任意一点,问阴影部分面积是多少?HGFEDCBA实用文档文案大全(H)GFEDCBAHGFEDCBA【解析】(法1)特殊点法。由于H为AD边上任意一点,找H的特殊点,把H点与A点重合(如左上图),那么阴影部分的面积就是AEF与ADG的面积之和,而这两个三角形的面积分别为长方形ABCD面积的18和14,所以阴影部分面积为长方形ABCD面积的113848,为33613.58。(法2)寻找可利用的条件,连接BH、HC,如右上图。可得:12EHBAHBSS、12FHBCHBSS、12DHGDHCSS,而36ABCDAHBCHBCHDSSSS,即11()361822EHBBHFDHGAHBCHBCHDSSSSSS;而EHBBHFDHGEBFSSSSS阴影,11111()()364.522228EBFSBEBFABBC。所以阴影部分的面积是:18184.513.5EBFSS阴影。【巩固】在边长为6厘米的正方形ABCD内任取一点P,将正方形的一组对边二等分,另一组对边三等分,分别与P点连接,求阴影部分面积。PDCBAABCD(P)PDCBA【解析】(法1)特殊点法。由于P是正方形内部任意一点,可采用特殊点法,假设P点与A点重合,则阴影部分变为如上中图所示,图中的两个阴影三角形的面积分别占正方形面积的14和16,所以阴影部分的面积为2116()1546平方厘米。(法2)连接PA、PC。由于PAD与PBC的面积之和等于正方形ABCD面积的一半,所以上、下两个阴影三角形的面积之和等于正方形ABCD面积的14,同理可知左、右两个阴影三角形的面积之和等于正方形ABCD面积的16,所以阴影部分的面积为2116()1546平方厘米。【例7】如右图,E在AD上,AD垂直BC,12AD厘米,3DE厘米.求三角形ABC的面积是三角形EBC面积的几倍?EDCBA【解析】因为AD垂直于BC,所以当BC为三角形ABC和三角形EBC的底时,AD是三角形ABC的高,ED是三角形EBC的高,实用文档文案大全于是:三角形ABC的面积1226BCBC三角形EBC的面积321.5BCBC所以三角形ABC的面积是三角形EBC的面积的4倍.【例8】如图,在平行四边形ABCD中,EF平行AC,连结BE、AE、CF、BF那么与BEC等积的三角形一共有哪几个三角形?FDECBA【解析】AEC、AFC、ABF.【巩固】如图,在ABC中,D是BC中点,E是AD中点,连结BE、CE,那么与ABE等积的三角形一共有哪几个三角形?EDCBA【解析】3个,AEC、BED、DEC.【巩固】如图,在梯形ABCD中,共有八个三角形,其中面积相等的三角形共有哪几对?ODCBA【解析】ABD与ACD,ABC与DBC,ABO与DCO.【例9】(第四届”迎春杯”试题)如图,三角形ABC的面积为1,其中3AEAB,2BDBC,三角形BDE的面积是多少?ABECDDCEBA【解析】连接CE,∵3AEAB,∴2BEAB,2BCEACBSS又∵2BDBC,∴244BDEBCEABCSSS.【例10】(2008年四中考题)如右图,ADDB,AEEFFC,已知阴影部分面积为5平方厘米,ABC的面积是平方厘米.FEDCBAFEDCBA【解析】连接CD.根据题意可知,DEF的面积为DAC面积的13,DAC的面积为ABC面积的12,所以DEF的面积为ABC面积的111236.而DEF的面积为5平方厘米,所以ABC的面积为实用文档文案大全15306(平方厘米).【巩固】图中三角形ABC的面积是180平方厘米,D是BC的中点,AD的长是AE长的3倍,EF的长是BF长的3倍.那么三角形AEF的面积是多少平方厘米?FEDCBA【解析】ABD,ABC等高,所以面积的比为底的比,有12ABDABCSBDSBC,所以ABDS=111809022ABCS(平方厘米).同理有190303ABEABDAESSAD(平方厘米),34AFEABEFESSBE3022.5(平方厘米).即三角形AEF的面积是22.5平方厘米.【巩固】如图,在长方形ABCD中,Y是BD的中点,Z是DY的中点,如果24AB厘米,8BC厘米,求三角形ZCY的面积.ABCDZY【解析】∵Y是BD的中点,Z是DY的中点,∴1122ZYDB,14ZCYDCBSS,又∵ABCD是长方形,∴11124442ZCYDCBABCDSSS(平方厘米).【巩固】如图,三角形ABC的面积是24,D、E和F分别是BC、AC和AD的中点.求三角形DEF的面积.FEDCBA【解析】三角形ADC的面积是三角形ABC面积的一半24212,三角形ADE又是三角形ADC面积的一半1226.三角形FED的面积是三角形ADE面积的一半,所以三角形FED的面积623.【巩固】如图,在三角形ABC中,8BC厘米,高是6厘米,E、F分别为AB和AC的中点,那么三角形EBF的面积是多少平方厘米?FECBA【解析】∵F是AC的中点∴2ABCABFSS同理2ABFBEFSS∴486246BEFABCSS(平方厘米).实用文档文案大全【例11】如图ABCD是一个长方形,点E、F和G分别是它们所在边的中点.如果长方形的面积是36个平方单位,求三角形EFG的面积是多少个平方单位.FEGDCBAFEGDCBA【解析】如右图分割后可得,243649EFGDEFCABCDSSS矩形矩形(平方单位).【巩固】(97迎春杯决赛)如图,长方形ABCD的面积是1,M是AD边的中点,N在AB边上,且2ANBN.那么,阴影部分的面积是多少?ANBMDCCDMBNA【解析】连接BM,因为M是中点所以ABM△的面积为14又因为2ANBN,所以BDC△的面积为1114312,又因为BDC△面积为12,