数列练习题[基础训练A组]一、选择题1.在数列55,34,21,,8,5,3,2,1,1x中,x等于()A.11B.12C.13D.142.等差数列9}{,27,39,}{963741前则数列中nnaaaaaaaa项的和9S等于()A.66B.99C.144D.2973.等比数列na中,,243,952aa则na的前4项和为()A.81B.120C.168D.1924.12与12,两数的等比中项是()A.1B.1C.1D.215.已知一等比数列的前三项依次为33,22,xxx,那么2113是此数列的第()项A.2B.4C.6D.86.在公比为整数的等比数列na中,如果,12,183241aaaa那么该数列的前8项之和为()A.513B.512C.510D.8225二、填空题1.等差数列na中,,33,952aa则na的公差为______________。2.数列{na}是等差数列,47a,则7s_________3.两个等差数列,,nnba,327......2121nnbbbaaann则55ba=___________.4.在等比数列na中,若,75,393aa则10a=___________.5.在等比数列na中,若101,aa是方程06232xx的两根,则47aa=___________.6.计算3log33...3n___________.三、解答题1.成等差数列的四个数的和为26,第二数与第三数之积为40,求这四个数。2.在等差数列na中,,1.3,3.0125aa求2221201918aaaaa的值。3.求和:)0(),(...)2()1(2anaaan4.设等比数列na前n项和为nS,若9632SSS,求数列的公比q数列[综合训练B组]一、选择题1.已知等差数列na的公差为2,若431,,aaa成等比数列,则2a()A.4B.6C.8D.102.设nS是等差数列na的前n项和,若5935,95SSaa则()A.1B.1C.2D.213.若)32lg(),12lg(,2lgxx成等差数列,则x的值等于()A.1B.0或32C.32D.5log24.已知三角形的三边构成等比数列,它们的公比为q,则q的取值范围是()A.15(0,)2B.15(,1]2C.15[1,)2D.)251,251(5.在ABC中,tanA是以4为第三项,4为第七项的等差数列的公差,tanB是以13为第三项,9为第六项的等比数列的公比,则这个三角形是()A.钝角三角形B.锐角三角形C.等腰直角三角形D.以上都不对6.在等差数列na中,设naaaS...211,nnnaaaS2212...,nnnaaaS322123...,则,,,321SSS关系为()A.等差数列B.等比数列C.等差数列或等比数列D.都不对7.等比数列na的各项均为正数,且564718aaaa,则3132310loglog...logaaa()A.12B.10C.31log5D.32log5二、填空题1.等差数列na中,,33,562aa则35aa_________。2.数列7,77,777,7777…的一个通项公式是______________________。3.在正项等比数列na中,153537225aaaaaa,则35aa_______。4.等差数列中,若),(nmSSnm则nmS=_______。5.已知数列na是等差数列,若471017aaa,45612131477aaaaaa且13ka,则k_________。6.等比数列na前n项的和为21n,则数列2na前n项的和为______________。三、解答题1.三个数成等差数列,其比为3:4:5,如果最小数加上1,则三数成等比数列,那么原三数为什么?2.求和:12...321nnxxx3.已知数列na的通项公式112nan,如果)(Nnabnn,求数列nb的前n项和。4.在等比数列na中,,400,60,364231nSaaaa求n的范围。数列[提高训练C组]一、选择题1.数列na的通项公式11nnan,则该数列的前()项之和等于9。A.98B.99C.96D.972.在等差数列na中,若4,184SS,则20191817aaaa的值为()A.9B.12C.16D.173.在等比数列na中,若62a,且0122345aaa则na为()A.6B.2)1(6nC.226nD.6或2)1(6n或226n4.在等差数列na中,2700...,200...10052515021aaaaaa,则1a为()A.22.5B.21.5C.20.5D.205.已知等差数列nan的前}{项和为mSaaamSmmmmn则且若,38,0,1,12211等于()A.38B.20C.10D.96.等差数列{}na,{}nb的前n项和分别为nS,nT,若231nnSnTn,则nnab=()A.23B.2131nnC.2131nnD.2134nn二、填空题1.已知数列na中,11a,11nnnnaaaa,则数列通项na___________。2.已知数列的12nnSn,则12111098aaaaa=_____________。3.三个不同的实数cba,,成等差数列,且bca,,成等比数列,则::abc_________。4.在等差数列na中,公差21d,前100项的和45100S,则99531...aaaa=_____________。5.若等差数列na中,37101148,4,aaaaa则13__________.S6.一个等比数列各项均为正数,且它的任何一项都等于它的后面两项的和,则公比q为_______________。三、解答题1.已知数列na的前n项和nnS23,求na2.一个有穷等比数列的首项为1,项数为偶数,如果其奇数项的和为85,偶数项的和为170,求此数列的公比和项数。3.数列),60cos1000lg(),...60cos1000lg(),60cos1000lg(,1000lg01020n…的前多少项和为最大?4.已知数列na的前n项和)34()1(...139511nSnn,求312215SSS的值。参考答案(数学5必修)第二章[基础训练A组]一、选择题1.C12nnnaaa2.B147369464639,27,339,327,13,9aaaaaaaaaa91946999()()(139)99222Saaaa3.B43521423(13)27,3,3,12013aaqqaSaq4.C2(21)(21)1,1xx5.B2(33)(22),14,14xxxxxxx或而133313,134(),422222nxqnx6.C332112131(1)18,()12,,2,22qaqaqqqqqq或而89182(12),2,2,2251012qZqaS二、填空题1.85233985252aad2.4971747()7492Saaa3.1265195519955199199()2792652929312()2aaaaaaSbbbbSbb4.337563310925,5,755qqaaq5.2471102aaaa6.112n111111...242422333log33...3log(333)log(3)nnn211[1()]111122...11222212nnn三、解答题1.解:设四数为3,,,3adadadad,则22426,40aad即1333,222ad或,当32d时,四数为2,5,8,11当32d时,四数为11,8,5,22.解:1819202122201255,72.8,0.4aaaaaaaadd201283.13.26.3aad∴18192021222056.3531.5aaaaaa3.解:原式=2(...)(12...)naaan2(1)(...)2nnnaaa2(1)(1)(1)12(1)22naannaanna4.解:显然1q,若1q则3619,SSa而91218,Sa与9632SSS矛盾由369111369(1)(1)2(1)2111aqaqaqSSSqqq96332333120,2()10,,1,2qqqqqqq得或而1q,∴243q参考答案(数学5必修)第二章[综合训练B组]一、选择题1.B2214322222,(2)(4)(2),212,6aaaaaaaa2.A95539951559SaSa3.D2lg2lg(23)2lg(21),2(23)(21)xxxx22(2)4250,25,log5xxxx4.D设三边为2,,,aaqaq则222aaqaqaaqaqaqaqa,即222101010qqqqqq得1515221515,22qqRqq或,即151522q5.B374,4,2,tan2,aadA361,9,3,tan33bbqBtantan()1CAB,,,ABC都是锐角6.A122332232,,,,,,nnnnnnnnnnSSSSSSSSSSSSS成等差数列7.B5103132310312103453loglog...loglog(...)log()log(3)10aaaaaaaa二、填空题1.38352638aaaa2.)110(97nna123479,99,999,9999...101,101,101,101,7993.522233553535()2()()25,5aaaaaaaa4.02nSanbn该二次函数经过(,0)mn,即0mnS5.1877999172317,,1177,7,,(9)73kaaaadaakd2137(9),183kk6.413n11212111421,21,2,4,1,4,14nnnnnnnnnnSSaaaqS三、解答题1.解:设原三数为3,4,5,(0)tttt,不妨设0,t则2(31)516,5tttt315,420,525,ttt∴原三数为15,20,25。2.解:记21123...,nnSxxnx当1x时,1123...(1)2nSnnn当1x时,23123...(1),nnnxSxxxnxnx231(1)1...,nnnxSxxxxnx11nnnxSnxx∴原式=)1(2)1()1(11xnnxnxxxnn3.解:112,5211,6nnnnbann,当5n时,2(9112)102nnSnnn