1课时跟踪检测(三十二)等差数列及其前n项和[A级基础题——基稳才能楼高]1.已知等差数列{an}的前n项和为Sn,a3=3,a5=5,则S7的值是()A.30B.29C.28D.27解析:选C由题意,设等差数列的公差为d,则d=a5-a35-3=1,故a4=a3+d=4,所以S7=7a1+a72=7×2a42=7×4=28.故选C.2.(2019·北京丰台区模拟)数列{2n-1}的前10项的和是()A.120B.110C.100D.10解析:选C∵数列{2n-1}是以1为首项,2为公差的等差数列,∴S10=a1+a10×102=1+19×102=100.故选C.3.(2019·豫北重点中学联考)已知数列{an}中a1=1,an+1=an-1,则a4等于()A.2B.0C.-1D.-2解析:选D因为a1=1,an+1=an-1,所以数列{an}为等差数列,公差d为-1,所以a4=a1+3d=1-3=-2,故选D.4.(2019·张掖质检)设等差数列{an}的公差为d,且a1a2=35,2a4-a6=7,则d=()A.4B.3C.2D.1解析:选C∵{an}是等差数列,∴2a4-a6=a4-2d=a2=7,∵a1a2=35,∴a1=5,∴d=a2-a1=2,故选C.5.(2019·南昌模拟)已知等差数列{an}的前n项和为Sn,且S5=50,S10=200,则a10+a11的值为()A.20B.40C.60D.80解析:选D设等差数列{an}的公差为d,由已知得S5=5a1+5×42d=50,S10=10a1+10×92d=200,即2a1+2d=10,a1+92d=20,解得a1=2,d=4.∴a10+a11=2a1+19d=80.故选D.[B级保分题——准做快做达标]1.(2019·惠州调研)已知等差数列{an}的前n项和为Sn,且a9=12a12+6,a2=4,则数列1Sn的前10项和为()A.1112B.1011C.910D.89解析:选B设等差数列{an}的公差为d,由a9=12a12+6及等差数列的通项公式得a1+5d=12,又a2=4,∴a1=2,d=2,∴Sn=n2+n,∴1Sn=1nn+1=1n-1n+1,∴1S1+1S2+…+1S10=1-12+12-13+…+110-111=1-111=1011.选B.2.(2019·昆明适应性检测)已知等差数列{an}各项均为正数,其前n项和为Sn,若a1=1,S3=a2,则a8=()A.12B.13C.14D.15解析:选D法一:设等差数列{an}的公差为d,由题意得3+3d=1+d,解得d=2或d=-1(舍去),所以a8=1+7×2=15,故选D.法二:S3=a1+a2+a3=3a2,由S3=a2可得3a2=a2,解得a2=3或a2=0(舍去),则d=a2-a1=2,所以a8=1+7×2=15,故选D.3.(2019·南宁名校联考)等差数列{an}中,a3+a7=6,则{an}的前9项和等于()A.-18B.27C.18D.-27解析:选B法一:设等差数列的公差为d,则a3+a7=a1+2d+a1+6d=2a1+8d=6,所以a1+4d=3.于是{an}的前9项和S9=9a1+9×82d=9(a1+4d)=9×3=27,故选B.法二:由等差数列的性质,得a1+a9=a3+a7=6,所以数列{an}的前9项和S9=9a1+a92=9×62=27,故选B.34.(2019·中山一中统测)设数列{an}的前n项和为Sn,且an=-2n+1,则数列Snn的前11项和为()A.-45B.-50C.-55D.-66解析:选D∵an=-2n+1,∴数列{an}是以-1为首项,-2为公差的等差数列,∴Sn=n[-1+-2n+1]2=-n2,∴Snn=-n2n=-n,∴数列Snn是以-1为首项,-1为公差的等差数列,∴数列Snn的前11项和为11×(-1)+11×102×(-1)=-66,故选D.5.(2019·南昌模拟)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为()A.1升B.6766升C.4744升D.3733升解析:选B设该等差数列为{an},公差为d,由题意得a1+a2+a3+a4=3,a7+a8+a9=4,即4a1+6d=3,3a1+21d=4,解得a1=1322,d=766.∴a5=1322+4×766=6766.故选B.6.(2019·云南统一检测)已知等差数列{an}中,a1=11,a5=-1,则{an}的前n项和Sn的最大值是()A.15B.20C.26D.30解析:选C设数列{an}的公差为d,则d=a5-a15-1=-3,所以an=a1+(n-1)d=-3n+14,由an≥0,an+1≤0⇒14-3n≥0,11-3n≤0,解得113≤n≤143,即n=4,所以{an}的前4项和最大,且S4=4×11+4×32×(-3)=26,故选C.7.(2019·四川三地四校联考)在等差数列{an}中,a1=-2015,其前n项和为Sn,若S1212-S1010=2,则S2018=()A.2018B.-20184C.4036D.-4036解析:选C设等差数列{an}的前n项和为Sn=An2+Bn,则Snn=An+B,∴Snn是等差数列.∵S1212-S1010=2,∴Snn的公差为1,又S11=a11=-2015,∴Snn是以-2015为首项,1为公差的等差数列,∴S20182018=-2015+2017×1=2,∴S2018=4036.故选C.8.(2019·太原模拟)已知数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)在函数y=x2-10x的图象上,等差数列{bn}满足bn+bn+1=an(n∈N*),其前n项和为Tn,则下列结论正确的是()A.Sn2TnB.b4=0C.T7b7D.T5=T6解析:选D因为点(n,Sn)(n∈N*)在函数y=x2-10x的图象上,所以Sn=n2-10n,所以an=2n-11,又bn+bn+1=an(n∈N*),数列{bn}为等差数列,设公差为d,所以2b1+d=-9,2b1+3d=-7,解得b1=-5,d=1,所以bn=n-6,所以b6=0,所以T5=T6,故选D.9.(2019·长春模拟)已知数列{an}是等差数列,其前n项和Sn有最大值,且a2019a2018-1,则使得Sn0的n的最大值为()A.2018B.2019C.4035D.4037解析:选C设等差数列{an}的公差为d,由题意知d0,a20180,a2018+a20190,所以S4035=4035a1+a40352=4035a20180,S4036=4036a1+a40362=4036a2018+a201920,所以使得Sn0的n的最大值为4035,故选C.10.(2019·武汉模拟)设等差数列{an}满足a3+a7=36,a4a6=275,且anan+1有最小值,则这个最小值为()A.-10B.-12C.-9D.-13解析:选B设等差数列{an}的公差为d,∵a3+a7=36,∴a4+a6=36,又a4a6=275,联立,解得a4=11,a6=25或a4=25,a6=11,当a4=11,a6=25时,可得a1=-10,d=7,此时an=7n-17,a2=-3,a3=4,易知当n≤2时,an0,当n≥3时,an0,∴a2a3=-12为anan+1的最小值;5当a4=25,a6=11时,可得a1=46,d=-7,此时an=-7n+53,a7=4,a8=-3,易知当n≤7时,an0,当n≥8时,an0,∴a7a8=-12为anan+1的最小值.综上,anan+1的最小值为-12.11.(2019·广州适应性测试)设等差数列{an}的前n项和为Sn.若a3=5,且S1,S5,S7成等差数列,则数列{an}的通项公式an=________.解析:设等差数列{an}的公差为d,∵a3=5,且S1,S5,S7成等差数列,∴a1+2d=5,a1+7a1+21d=10a1+20d,解得a1=1,d=2,∴an=2n-1.答案:2n-112.(2018·北京高考)设{an}是等差数列,且a1=3,a2+a5=36,则{an}的通项公式为________.解析:法一:设数列{an}的公差为d.∵a2+a5=36,∴(a1+d)+(a1+4d)=36,∴2a1+5d=36.∵a1=3,∴d=6,∴an=6n-3.法二:设数列{an}的公差为d,∵a2+a5=a1+a6=36,a1=3,∴a6=33,∴d=a6-a15=6.∵a1=3,∴an=6n-3.答案:an=6n-313.(2019·南昌模拟)等差数列{an}的前n项和为Sn,已知a5+a7=4,a6+a8=-2,则当Sn取最大值时,n的值是________.解析:依题意得2a6=4,2a7=-2,a6=20,a7=-10.又数列{an}是等差数列,所以在该数列中,前6项均为正数,自第7项起以后各项均为负数,于是当Sn取最大值时,n=6.答案:614.(2019·石家庄重点高中摸底考试)设公差不为0的等差数列{an}的前n项和为Sn,若a2,a5,a11成等比数列,且a11=2(Sm-Sn)(mn0,m,n∈N*),则m+n的值是________.解析:设等差数列{an}的公差为d(d≠0),因为a2,a5,a11成等比数列,所以a25=a2a11,所以(a1+4d)2=(a1+d)(a1+10d),解得a1=2d,又a11=2(Sm-Sn)(mn0,m,n∈N*),所以2ma1+m(m-1)d-2na1-n(n-1)d=a1+10d,化简得(m+n+3)(m-n)=12,因为mn0,m,n∈N*,所以m-n=1,m+n+3=12或m-n=2,m+n+3=6,解得m=5,n=4或m=52,n=126(舍去),所以m+n=9.答案:915.(2019·江西三校联考)已知等差数列{an}的前n项和为Sn,且S5=45,S6=60.(1)求数列{an}的通项公式;(2)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=3,求1bn的前n项和Tn.解:(1)设等差数列{an}的公差为d,则a6=S6-S5=15,所以a6=a1+5d=15,S5=5a1+10d=45,解得a1=5,d=2,所以an=2n+3.(2)bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1=an-1+an-2+…+a1+3=n2+2n,所以1bn=1nn+2=121n-1n+2,所以Tn=121+12-1n+1-1n+2=3n2+5n4n2+12n+8.16.(2019·辽宁五校协作体模考)已知数列{an}是等差数列,且a1,a2(a1a2)分别为方程x2-6x+5=0的两个实根.(1)求数列{an}的前n项和Sn;(2)在(1)中,设bn=Snn+c,求证:当c=-12时,数列{bn}是等差数列.解:(1)∵a1,a2(a1a2)分别为方程x2-6x+5=0的两个实根,∴a1=1,a2=5,∴等差数列{an}的公差为4,∴Sn=n·1+nn-12·4=2n2-n.(2)证明:当c=-12时,bn=Snn+c=2n2-nn-12=2n,∴bn+1-bn=2(n+1)-2n=2,b1=2.∴数列{bn}是以2为首项,2为公差的等差数列.