分数乘法知识点归类与练习一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。例如:98×5表示求5个98的和是多少?2、分数乘分数是求一个数的几分之几是多少。例如:98×43表示求98的43是多少?(二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。3、为了计算简便,能约分的要先约分,再计算。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。练一、分数与整数相乘。512×4=26×613=1115×5=24×1348=练二、分数和分数相乘。(注意:能约分的先约分,再计算。)25×34=67×78=910×5063=1234×1736=(三)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。?????一个数(0除外)乘小于1的数(0除外),积小于这个数。?????一个数(0除外)乘1,积等于这个数。练三、比较大小56×4○569×23○23×938×12○38(四)分数混合运算的运算顺序和整数的运算顺序相同。练四、分数乘、加、减混合。716×(5063-27)45×1516×1456×34+123+512×415(五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc练五、分数乘、加、减简便运算。(56-49)×3699×9798913-718×91367×12×712815×47×316911×97×11938×712+512×38517×79+79×4171225×15-725×15二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。2、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几几。4、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“÷”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1分率)=分率对应量三、分数乘法应用题1、求一个数的几分之几是多少?(用乘法)“1”×ab=例如:求25的53是多少?列式:25×53=15甲数的53等于乙数,已知甲数是25,求乙数是多少?列式:25×53=15注:已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。2、(什么)是(什么)的)()(几几。()=(“1”)×)()(几几例1:已知甲数是乙数的53,乙数是25,求甲数是多少?甲数=乙数×53即25×53=15注:(1)“是”“的”字中间的量“乙数”是53的单位“1”的量,即53是把乙数看作单位“1”,把乙数平均分成5份,甲数是其中的3份。(2)“是”“占”“比”这三个字都相当于“=”号,“的”字相当于“×”。(3)单位“1”的量×分率=分率对应的量例2:甲数比乙数多(少)53,乙数是25,求甲数是多少?甲数=乙数±乙数×53即25±25×53=25×(1±53)=40(或10)3、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。4、什么是速度?——速度是单位时间内行驶的路程。速度=路程÷时间时间=路程÷速度路程=速度×时间——单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。5、求甲比乙多(少)几分之几?多:(甲-乙)÷乙少:(乙-甲)÷乙练一、看图列式计算。练二、解决问题。1、甲乙两地相距420千米,一辆汽车行驶了全程的57,行驶了多少千米?2、一个果园占地20公顷,其中的25种苹果树,14种梨树,苹果树和梨树各种了多少公顷?3、某鞋店进来皮鞋600双。第一周卖出总数的15,第二周卖出总数的38。⑴两周一共卖出总数的几分之几?⑵两周一共卖出多少双?⑶还剩多少双?4、六年级同学给灾区的小朋友捐款。六一班捐了500元,六二班捐的是六一班的45,六三班捐的是六二班的98。六三班捐款多少元?5、一件西服原价180元,现在的价格比原来降低了15,现在的价格是多少元?6、希望小学三年级有学生216人,四年级人数比三年级多29,四年级有学生多少人?分数除法(一)倒数的意义:乘积为1的两个数互为倒数。1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。例如:a×b=1则a、b互为倒数。3、求倒数的方法:①求分数的倒数:交换分子、分母的位置。②求整数的倒数:整数分之1。③求带分数的倒数:先化成假分数,再求倒数。④求小数的倒数:先化成分数再求倒数。4、1的倒数是它本身,因为1×1=10没有倒数,因为任何数乘0积都是0,且0不能作分母。5、任意数a(a≠0),它的倒数为a1;非零整数a的倒数为a1;分数ab的倒数是ba。6、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。假分数的倒数小于或等于1。带分数的倒数小于1。比字后面的量乙)—甲(=比后差(二)分数除法计算(1)分数除法的意义和分数除以整数知识点一:分数除法的意义整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。已知两个因数的积与其中一个因数,求另一个因数,用(除法)计算。1013103的意义是:已知两个因数的积是103,其中一个因数是3,求另一个因数是多少。分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。知识点二:分数除以整数的计算方法把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。分数除以整数(0除外)的计算方法:(1)用分子和整数相除的商做分子,分母不变。(2)分数除以整数,等于分数乘这个整数的倒数。练习:1、填空(1)根据3565372和分数除法意义可得:53356(),72356()。(2)把29m长的绳子平均剪成4段,每段是29m的()。(3)打字员打一份文件,打了20分钟后还剩52,平均每分钟打这份文件的()。2.列式计算。(1)一个数的6倍是51,这个数是多少?(2)51的61是多少?3.看图列式计算。(2)一个数除以分数知识点一:一个数除以分数的计算方法一个数除以分数,等于这个数乘分数的倒数。知识点二:分数除法的统一计算法则甲数除以乙数(0除外),等于甲数乘乙数的倒数。知识点三:商与被除数的大小关系一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。0除以任何数商都为0.练习:1.算一算2.填空。(1)32的43是(),它和32÷()得数相同。(2)分数除法可以转化为()进行计算,计算过程中,转变成乘()的倒数。3.判断。(1)两个真分数相除,商大于被除数。(2)一个数除以假分数,商一定小于被除数。(3)分数除法的混合运算知识点一:分数除加、除减的运算顺序例:8÷32-4=8×23-4=8除加、除减混合运算,如果没有括号,先算除法,后算加减。知识点二:连除的计算方法例:92÷72÷1514分数连除,可以分步转化为乘法计算,也可以一次都转化为乘法再计算,能约分的要约分。知识点三:不含括号的分数混合运算的运算顺序在一个分数混合运算的算式里,如果只含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二级运算,再算第一级运算。知识点四:含有括号的分数混和运算的运算顺序在一个分数混合运算的算式里,如果既有小括号又有中括号,要先算小括号里面的,再算中括号里面的。知识点五:整数的运算定律在分数混和运算中的运用在进行分数的混和运算中,可以利用加法、减法、乘法、除法的运算定律或运算性质,使计算简便。(三)解决问题五、分数除法和比的应用1、已知单位“1”的量用乘法。例:甲是乙的53,乙是25,求甲是多少?即:甲=乙×53(15×53=9)2、未知单位“1”的量用除法。例:甲是乙的53,甲是15,求乙是多少?即:甲=乙×53(15÷53=25)(建议列方程答)3、分数应用题基本数量关系(1)甲是乙的几分之几?甲=乙×几分之几(例:甲是15的53,求甲是多少?15×53=9)乙=甲÷几分之几(例:9是乙的53,求乙是多少?9÷53=15)几分之几=甲÷乙(例:9是15的几分之几?9÷15=53)(“是”字相当“÷”号,乙是单位“1”)(2)甲比乙多(少)几分之几?A差÷乙=乙差(“比”字后面的量是单位“1”的量)(例:9比15少几分之几?(15-9)÷15=15915=156=52)B多几分之几是:乙甲–1(例:15比9少几分之几?15÷9=915-1=35–1=32)C少几分之几是:1–乙甲(例:9比15少几分之几?1-9÷15=1–159=1–53=52)D甲=乙±差=乙±乙×乙差=乙±乙×几几=乙(1±几几)(例:甲比15少52,求甲是多少?15–15×52=15×(1–52)=9(多是“+”少是“–”)E乙=甲÷(1±几几)(例:9比乙少52,求乙是多少?9÷(1-52)=9÷53=15)(多是“+”少是“–”)(例:15比乙多32,求乙是多少?15÷(1+32)=15÷35=9)(多是“+”少是“–”)4、画线段图:(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。(2)分析数量关系。(3)找等量关系。(4)列方程。注:两个量的关系画两条线段图,部分和整体的关系画一条线段图。