-1-三角形的认识【基础知识】知识点1三角形的定义1.由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。表示:三角形可用符号“△”表示,如右图三角形记作:△ABC2.一个三角形有三条边,三个角、三个顶点如图三角形中三边可表示为AB,BC,AC,顶点A所对的边BC也可表示为a,顶点B所对的边AC表示为b,顶点C所对的边AB表示为c知识点2三角形的性质1.三角形三边关系:三角形任意两边之和大于第三边;三角形任意两边之差小于第三边。三角形的内角关系:三角形内角和为1803.三角形的分类:三角形按内角的大小可以分为锐角三角形、直角三角形、钝角三角形。其中直角三角形的两个锐角互余知识点3三角形的中线、角平分线和高线三角形的重要线段概念图形表示法三角形的高线从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段∵AE是△ABC的AB上的高线.∴CE⊥AB∠AEC=∠BEC=90°.三角形的中线三角形中,连结一个顶点和它对边中点的线段∵AD是△ABC的BC上的中线.∴BD=CD=½BC三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间∵.AE是△ABC的∠ABC的平分线∴∠1=∠2=ABCabc-2-的线段21∠ABC结论总结:【典例剖析】例1.有两根长度分别为5cm和8cm的木棒,(1)再取一根长度为2cm的木棒,它们能摆成三角形吗?为什么?(2)如果取一根长度为13cm的木棒呢?(3)聪明的你能取一根木棒,与原来的两根木棒摆成三角形吗?(4)要选取的第三根木棒的长度x要满足什么条件呢?例2.若△ABC的三边长a,b,c都是正整数,且满足.,如果b=4,问这样的三角形有几个?例3.已知一个三角形有两边相等,并且周长为56cm,两不等边之比为3︰2,求这个三角形各边的长。例4.判断满足下列条件的ABC是锐角三角形、直角三角形还是钝角三角形;(1)80,25AB锐角三角形直角三角形钝角三角形角平分线(有几条,是否相交,交点在那)中线高线cab-3-ADACAB(2)30,36ABBC(3)1126ABC例5.三角形ABC的一个内角度数为40,且AB,求C的外角的度数。变式1:在直角三角形中,两个锐角的差为40°,求这两个锐角的度数。变式2:如右图,已知△ABC中,∠1=27°,∠2=85°,∠3=38°求∠4的度数例6.1.如图1,三角形ABC中,D为BC上的一点,且S△ABD=S△ADC,则AD为().A.高B.角平分线C.中线D.不能确定如图2,已知∠1=∠2,则AH必为三角形ABC的().A.角平分线B.中线C.一角的平分线D.角平分线所在射线3.如图3,AE⊥BC于E,试问AE为哪些三角形的高?变式:如图,(1)共有个直角三角形(2)高AD.BE.CF相对应的底分别是、、。(3)AD=3.BC=6.AB=5.BE=4,则S△ABC=、CF=、AC=例7.已知非直角三角形ABC中,45A,高BD和CE所在的直线交于H,求BHC的度数。-4-例8.△ABC中,若∠A=800,I为三条角平分线交点,则∠BIC=.例9.如图,ABC的周长为9,AD为中线,ABD的周长为8,ACD的周长为7,求AD的长。例10.如图,△ABC中,∠ACB=90°,CD是AB边上的高,DE平分∠ADC,且∠A=40°,求∠BCD和∠CED.【随堂练习】知识点1三角形的边1.用木棒钉成一个三角架,两根小棒分别是7cm和10cm,第三根小棒可取()A、20cmB、3cmC、11cmD、2cm2.下列三条线段,不能组成三角形的是()A.346B、8915C、20185D.1630143.已知等腰三角形一边等于5cm,一边等于10cm,另一边应等于()A、5cmB、10cmC、5或10cmD、12cm4.一个三角形的两边分别是5cm和11cm,第三边的长是一个偶数,则第三边的长是()A、2cmB、4cmC、6cmD、8cm5.已知一个三角形的两边长分别是3cm和4cm,则第三边长x的取值范围。若x是奇数,则x的值是。这样的三角形有个;若x是偶数,则x的值是,这样的三角形又AABDACA-5-40°2413有个。6.一个等腰三角形的一边是2cm,另一边是9cm,则这个三角形的周长是cm7.一个等腰三角形的一边是5cm,另一边是7cm,则这个三角形的周长是cm8.(1)如图,以A.B.C.D.E中的任意3个点为顶点的三角形共有_____个,请在图中画出这些三角形;(2)在第(1)小题所画的图中,以DE为一边的三角形共有_____个,它们是:___________________________.知识点2三角形的内角1.在⊿ABC,∠A=80°,∠B=60°,则∠C=。2.在⊿ABC中,∠A=55°,∠B=35°,则⊿ABC是三角形。3.在直角三角形中,一个锐角等于25°,另一个锐角=。4.在⊿ABC中,∠A:∠B:∠C=1:2:3,则∠C=。5.有下列三个说法,其中正确的个数是:()①一个三角形的三个内角中最多有一个钝角②一个三角形的三个内角中至少有一个锐角③一个三角形的三个内角中至少有一个直角A.0B.1C.2D.36.已知三角形的三个内角的度数之比是1:2:6,则这个三角形是三角形。7.在⊿ABC中,∠B=∠C=21∠A,则∠A=,∠B=,∠C=。8.在⊿ABC中,∠B-∠A-∠C=30°,则∠B=。9.若三角形的一个内角是另外两个内角的差,则这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不确定10.直角三角形中,有一个锐角是另一个锐角的2倍,求这个锐角的度数。11.如图,∠1+∠2+∠3+∠4=。知识点3三角形的高线、中线、角平分线1.如图1,AD是△ABC的∠A的平分线,若∠B=450,∠C=740,则∠ADB=;2.如图2,∠A=360,∠C=720,BD平分∠ABC,则∠ABD的度数-6-ABCEFD是;3.如图3,AD.BE.CF是△ABC的三条角平分线,则∠1=,∠3=21,∠6=;4.如图4,AD.BE.CF是△ABC的三条中线,则AB=2=2,BD=,AE=21;CADBACBCDABCAD那么所在的直线上),在的角平分线(是、,9056.如图AD.BE.CF分别是△ABC的高、中线、角平分线,下列表达式中错误的是()A.AE=CEB.∠ADC=90°C.∠CAD=∠CBED.∠ACB=2∠ACF7.下列各组图形中,哪一组图形中AD是△ABC的高()如图,在三角形ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E.F为AB上的一点,CF⊥AD于H.下列判断正确的有().(1)AD是三角形ABE的角平分线.(2)BE是三角形ABD边AD上的中线.(3)CH为三角形ACD边AD上的高.A.1个B.2个C.3个D.0个如图所示,在△ABC中,∠B=44,∠C=72,AD中△ABC的角分线,∠BAC=,∠ADC=;10.如图,已知在三角形ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.ADCBABCDABCDABCD(A)(B)(C)(D)下列各组图形中,哪一组图形中AD是△ABC的高(())ABCD图1ABCD图2ABCDEF图4图3ABCD-7-第8题第9题第10题11.如图,在ABC中,45,60BBAC,AD是ABC的一条角平分线,求ADB的度数。【巩固练习】1.三角形的三个内角中最多有个锐角,个钝角,个直角;三角形的三个内角中最少有个锐角。2.如果一个三角形三个内角分别是450,450,900,那么这个三角形按角分类叫做三角形。3.如图1:△ABC中,BD=CD,∠1=∠2,那么ED可以看作是△的中线,可以看作是△ABD的角平分线。图1图24.如图2:△ABC中,AD是角平分线,AE是高,已知∠B=400,∠C=700,求∠DAE的度数。AABDACA-8-5.按图中所给的条件,可求出∠1=、∠2=、∠3=.6.已知△ABC中,∠A+∠B=∠C,那么这个三角形是三角形;已知△ABC中,∠A=400,∠B=6∠C,则∠B=。7.三角形的两条边的长分别是2和7,第三条边的长x的取值范围是。8.等腰三角形的两条边长分别为4cm和7cm,那么这个等腰三角形的周长为cm;等腰三角形的两条边长分别为2cm和9cm,那么这个等腰三角形的周长为cm。9.一个三角形的两条边的长分别是2和7,而第三边的长为奇数,那么第三边的长是;若三角形的两边长分别是2和5,且这个三角形的周长是偶数,那么第三边的长是。10.图中三角形的个数是()A.8B.9C.10D.1111.下面四个图形中,线段BE是⊿ABC的高的图是()BACEBACEBACEBACEABCD12.如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得15OA米,10OB米,A、B间的距离不可能是()A.5米B.10米C.15米D.20米-9-13.三角形一个外角小于与它相邻的内角,这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.属于哪一类不能确定14.如图,在△ABC中,90C。,EF//AB,150。,则B的度数为()A.50。B.60。C.30。D.40。15.如图,在⊿ABC中,AD是中线,则⊿ABD的面积⊿ACD的面积(填“>”“<”“=”)16.如图,⊿ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=度。DCBAEDCBAF(第15题图)(第16题图)17.如图,已知∠B=38°,∠C=55°,∠DEC=23°,求∠F的度数.EBCFDA18.如图,D是△ABC的边BC上一点,且∠B=∠1,求证:∠2=∠BAC.【课后练习】一、填空题1.小亮、小丽和小军三位同学同时测量ABC△的三边长.小亮说:“三角形的周长是11”,小丽说:“有一条边长为4”,小军说:“三条边的长度是三个不同的整数”.请你回答,三边的长度应该是______.2.三角形的两边分别为4和5,第三边为,则的取值范围是-10-_________.3.在△ABC中,AB=9,BC=2,并且AC为奇数,那么△ABC的周长是_______.4.△ABC中,∠A=21∠B=31∠C,则三个内角分别为___________.5.一个三角形最多有__________个直角:有________个锐角;有_________个钝角.6.在△ABC中,∠A-∠B=15°,∠C=75°,则∠A=__________,∠B=__________.7.在ABC△中,A∠是B∠的2倍,C∠比AB∠∠还大12.则这个三角形是______三角形.8.在ABC△中,2AB,5BC,则______AC______.9.两根木棒的长分别是2㎝和3㎝,要选择第三根木棒,将它们钉成一个三角形框架,且第三根木棒长x(㎝)是一个整数,则x是.10.在ABC中,若∠A:∠B:∠C=2:3:5,则此三角形按角分类应为若A=B+C,则此三角形是_______三角形;若A>B+C,则此三角形是_______三角形.11.如左下图所示,在ABE中,AE所对的角是______,在ADE中,AD是_____的对边,在ADC中,AD是_____的对边.12.如右上图,以AB为一边的三角形共有__________个.13.如左下图,在ABC中,AE是中线,AD是角平分线,AF是高,填空:(1)1________2BE;(2)1________2BAD;(3)____90AFB;(4)_____ABCS.-11-14.如右上图,ADBC,垂足为D,若42A,34B,则C____,BFD____,AEB______.二、选择题1.以下列各组线段为边,能组成三角形的是()A.2㎝,2㎝,5㎝B.3㎝,4㎝,7㎝C.4㎝,6㎝,8㎝D.5㎝,