2013年新北师大版八年级数学第三章位置与坐标1.确定位置一、学生起点分析《确定位置》是八年级上册第三章《位置的确定》第一节内容。本章是“图形与坐标”的主体内容,不仅呈现了“确定位置的多种方法、平面直角坐标系”等内容,而且也从坐标的角度使学生进一步体会图形平移、轴对称的数学内涵,同时又是一次函数的重要基础。《确定位置》将现实生活中常用的定位方法呈现给学生,将进一步丰富学生的数学活动经验,促进学生观察、分析、归纳、概括的能力。对八年级学生而言,他们对新鲜事物特别有兴趣。因此,教学过程中创设生动活泼、直观形象、且贴近他们生活的问题情境,会引起学生的极大关注,会有利于学生对内容的较深层次的理解;另一方面,学生已经具备了一定的学习能力,可多为学生创造自主学习、合作交流的机会,促使他们主动参与、积极探究。二、教学任务分析教学目标设计:(1)理解用一对数表示物体在平面内所在的位置,灵活运用不同的方式确定物体的位置;(2)经历在现实生活中确定物体位置的过程,感受确定物体位置的多种方法;(3)体验生活中处处有确定位置,感受现实生活中确定位置的必要性.重点:理解在平面内确定一个物体的位置一般需要两个数据;难点:灵活地运用不同的方式确定物体的位置。三、教学过程设计教学过程的设计、教法、学法的确定,应根据学生的实际情况进行合理设计。本课力求从学生实际出发,用他们熟悉或感兴趣的问题情境引出学习主题。第一环节感受生活中的情境,导入新课通过若干图片,引导学生感受生活中常常需要确定位置.导入新课:怎样确定位置呢?——§3.1确定位置。第二环节分类讨论,探索新知1.温故启新(1)温故:在数轴上,确定一个点的位置需要几个数据呢?答:一个,例如,若A点表示-2,B点表示3,则由-2和3就可以在数轴上找到A点和B点的位置。总结得出结论:在直线上,确定一个点的位置一般需要一个数据.(2)启新:在平面内,又如何确定一个点的位置呢?请同学们根据生活中确定位置的实例,请谈谈自己的看法.2.举例探究Ⅰ.探究1(1)在电影院内如何找到电影票上指定的位置?(2)在电影票上“6排3号”与“3排6号”中的“6”的含义有什么不同?(3)如果将“6排3号”简记作(6,3),那么“3排6号”如何表示?(5,6)表示什么含义?(4)在只有一层的电影院内,确定一个座位一般需要几个数据?结论:生活中常常用“排数”和“号数”来确定位置.Ⅱ.学有所用(1)你能用两个数据表示你现在所坐的位置吗?(2)破译密码游戏.结论:生活中常常用“行数”和“列数”来确定位置.Ⅲ.探究2.据新华社报道,1976年7月28日凌晨3时40分,我国河北省唐山市发生里氏7.8级的大地震,震中位于唐山市吉祥路一带,即北纬39°38′,东经118°11′.这次地震中,有24万人丧生,是有史以来地震给人类造成的特大灾难之一.你能在地图上找出震中的大致位置吗?结论:生活中常常用“经度”和“纬度”来确定位置.Ⅳ.探究3下图是某次海战中敌我双方舰艇对峙示意图(图中1厘米表示20海里).对我方舰艇来说:(1)北偏东40°的方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?(2)距我方潜艇20海里处的敌舰有哪几艘?(3)要确定每艘敌舰的位置,各需要几个数据?(4)如何表示敌舰A,B,C的位置?结论:生活中常常用“方位角”和“距离”来确定位置.Ⅴ.延伸阅读船只定位人们有时用两个角度确定海上航行船只的位置,如图,对于在大海中航行的船只A,海岸线上的B,C两个观测点上只要同时观测到船只相对于每个观测点的方位角,即可准确确定这艘船只的位置.这是因为,对于固定的点B,C,船只A既在射线BA上,又在射线CA上,两条射线的交点就是这艘船的位置.结论:生活中常常用两个“方位角”来确定位置.Ⅵ.探究4如图是西安市地图的一部分,如何向同伴介绍“省政府”所在的区域?“省图书馆”?结论:生活中常常用“区域定位”来确定位置.学有所用:在生活中,还有哪些用类似方法确定物体的位置的实例?3.学有所思,学有所获.在平面内,确定一个物体的位置一般需要几个数据?答:在平面内,确定一个物体的位置一般需要两个数据.若设这两个数据分别为a和b,则:a表示:排数、行数、经度、角度、角度……b表示:号数、列数、纬度、距离、角度…….4.议一议.在空间内,确定一个物体的位置一般需要几个数据?请举例说明.答:在空间内,确定一个物体的位置一般需要3个数据.如,在多层的电影院中确定位置就需要知道几层几排几号共3个数据.第三环节学有所用.1.在平面内,下列数据不能确定物体位置的是()A.3楼5号B.北偏西40°C.解放路30号D.东经120°,北纬30°2.海事救灾船前去救援某海域失火轮船,需要确定()A.方位角B.距离C.失火轮船的国籍D.方位角和距离3.你能向同学们介绍一下你家的位置吗?4.观察如图所示象棋盘,回答问题:(1)请你说出“将”与“帅”的位置;(2)说出“马3进4”(即第3列的马前进到第4列)后的位置.5.举出在空间确定物体位置的一种方法,在你的方法中用到了几个数据?第四环节感悟与收获1.知识能力:(1)在现实情境中感受了确定物体位置的多种方式,并能灵活运用不同方式确定物体的位置.(2)在直线上,确定一个点的位置一般需要一个数据;在平面内,确定一个点的位置一般需要两个数据;在空间内,确定一个点的位置一般需要三个数据.2.思想方法:(1)数形结合;(2)分类讨论;(3)感受生活—认知规律—运用规律.第五环节分层作业C类:教材习题3.1第1,2,3题;B类:用适当的方法向你的同学介绍你所熟悉的一处西安旅游景点的位置;A类:写一篇关于生活中如何确定位置的小文章.板书设计:§5.1确定位置(一)一.生活中常见的几中确定位置的方式.1.用“排数”和“号数”2.用“行数”和“列数”3.用“经度”和“纬度”4.用“角度”和“距离”5.用两个“角度”6.用区域定位二.结论:在平面内,确定一个点的位置一般需要两个数据.2平面直角坐标系(第1课时)一、学生起点分析《平面直角坐标系》是八年级上册第五章《位置与坐标》第二节内容。本章是“图形与坐标”的主体内容,不仅呈现了“确定位置的多种方法、平面直角坐标系”等内容,而且也从坐标的角度使学生进一步体会图形平移、轴对称的数学内涵,同时又是一次函数的重要基础。《平面直角坐标系》反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。因此,教学过程中创设生动活泼、直观形象、且贴近他们生活的问题情境,会引起学生的极大关注,会有利于学生对内容的较深层次的理解;另一方面,学生已经具备了一定的学习能力,可多为学生创造自主学习、合作交流的机会,促使他们主动参与、积极探究。二、教学任务分析教学目标设计:知识目标:1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念;2.认识并能画出平面直角坐标系;3.能在给定的直角坐标系中,由点的位置写出它的坐标。能力目标:1.通过画坐标系、由点找坐标等过程,发展学生的数形结合意识、合作交流意识;2.通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识和能力。情感目标:由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。教学重点:1.理解平面直角坐标系的有关知识;2.在给定的平面直角坐标系中,会根据点的位置写出它的坐标;3.由观察点的坐标、纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点。教学难点:1.横(或纵)坐标相同的点的连线与坐标轴的关系的探究;2.坐标轴上点的坐标有什么特点的总结。三、教学过程设计第一环节感受生活中的情境,导入新课同学们,你们喜欢旅游吗?假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图(图5-6),回答以下问题:(1)你是怎样确定各个景点位置的?(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?(3)如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?在上一节课,我们已经学习了许多确定位置的方法,这个问题中,大家看用哪种方法比较合适?第二环节分类讨论,探索新知1.平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分。学生自学课本,理解上述概念。2.例题讲解(出示投影)例1例1写出图中的多边形ABCDEF各顶点的坐标。ABCDEFO11xyABCDEF1yx3.想一想在例1中,(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?(2)线段CE位置有什么特点?(3)坐标轴上点的坐标有什么特点?由B(0,-3),C(3,-3)可以看出它们的纵坐标相同,即B,C两点到X轴的距离相等,所以线段BC平行于横轴(x轴),垂直于纵轴(y轴)。第三环节学有所用.补充:1.在下图中,确定A,B,C,D,E,F,G的坐标。ABCDEF1yxG(第1题)(第2题)2.如右图,求出A,B,C,D,E,F的坐标。第四环节感悟与收获1.认识并能画出平面直角坐标系。2.在给定的直角坐标系中,由点的位置写出它的坐标。3.能适当建立直角坐标系,写出直角坐标系中有关点的坐标。4.横(纵)坐标相同的点的直线平行于y轴,垂直于x轴;连接纵坐标相同的点的直线平行于x轴,垂直于y轴。5.坐标轴上点的纵坐标为0;纵坐标轴上点的坐标为0。6.各个象限内的点的坐标特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。第五环节布置作业(略)。xy1FEDCBA2.平面直角坐标系(第2课时)一、学生起点分析《平面直角坐标系》是八年级上册第三章《位置与坐标》第二节内容。本章是“图形与坐标”的主体内容,不仅呈现了“确定位置的多种方法、平面直角坐标系”等内容,而且也从坐标的角度使学生进一步体会图形平移、轴对称的数学内涵,同时又是一次函数的重要基础。《平面直角坐标系》反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。因此,教学过程中创设生动活泼、直观形象、且贴近他们生活的问题情境,会引起学生的极大关注,会有利于学生对内容的较深层次的理解;另一方面,学生已经具备了一定的学习能力,可多为学生创造自主学习、合作交流的机会,促使他们主动参与、积极探究。二、教学任务分析知识目标:1.知道在坐标轴上的点以及与坐标轴平行的直线上点的坐标的特征.2.知道不同象限点的坐标的特征。3.经历画坐标系、描点、连线、看图以及由点找坐标等过程,进一步体会平面直角坐标系中点与坐标之间的对应关系,发展数形结合意识。能力目标:1.经历画坐标系、描点、连线、看图以及由点找坐标等过程,发展学生的数形结合思想,培养学生的合作交流能力;2.通过由点确定坐标到根据坐标描点的转化过程,进一步培养学生的转化意识。情感目标:通过生动有趣的教学活动,发展学生的合情推理能力和丰富的情感、态度,提高学生学习数学的兴趣。教学重点、难点:体会平面直角坐标系中点与坐标之间的对应关系,发展数形结合意识。三、教学过程设计第一环节感受生活中的情境,导入新课.在上节课中我们学习了平面直角坐标系的定义,以及横轴、纵轴、点的坐标的定义,练习了在平面直角坐标系中由点找坐标,还探讨了横坐标或纵坐标相同的点的连线与坐标轴的关系,坐标轴上点的坐标有什么特点。1、探究坐标轴上点或与坐标轴平行的直线上点的坐标的特征.练习.在直角坐标系中描出下列各点,并将各组内这些点依次用线段连接起来.(1)D(-3,5),E(-7,3),F(-6,3),B(0,3),C(1,3),D