解一元二次方程配方法练习题1.用适当的数填空:①、x2+6x+=(x+)2;②、x2-5x+=(x-)2;③、x2+x+=(x+)2;④、x2-9x+=(x-)22.将二次三项式2x2-3x-5进行配方,其结果为_________.3.已知4x2-ax+1可变为(2x-b)2的形式,则ab=_______.4.将一元二次方程x2-2x-4=0用配方法化成(x+a)2=b的形式为_______,所以方程的根为_________.5.若x2+6x+m2是一个完全平方式,则m的值是()A.3B.-3C.±3D.以上都不对6.用配方法将二次三项式a2-4a+5变形,结果是()A.(a-2)2+1B.(a+2)2-1C.(a+2)2+1D.(a-2)2-17.把方程x+3=4x配方,得()A.(x-2)2=7B.(x+2)2=21C.(x-2)2=1D.(x+2)2=28.用配方法解方程x2+4x=10的根为()A.2±10B.-2±14C.-2+10D.2-109.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值()A.总不小于2B.总不小于7C.可为任何实数D.可能为负数10.用配方法解下列方程:(1)3x2-5x=2.(2)x2+8x=9(3)x2+12x-15=0(4)41x2-x-4=011.用配方法求解下列问题(1)求2x2-7x+2的最小值;(2)求-3x2+5x+1的最大值。12.用配方法证明:(1)21aa的值恒为正;(2)2982xx的值恒小于0.13.某企业的年产值在两年内从1000万元增加到1210万元,求平均每年增长百分率.解一元二次方程公式法练习题一、双基整合步步为营1.一般地,对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,它的根是_____,当b-4ac0时,方程_________.2.方程ax2+bx+c=0(a≠0)有两个相等的实数根,则有________,若有两个不相等的实数根,则有_________,若方程无解,则有__________.3.若方程3x2+bx+1=0无解,则b应满足的条件是________.4.关于x的一元二次方程x2+2x+c=0的两根为________.(c≤1)5.用公式法解方程x2=-8x-15,其中b2-4ac=_______,x1=_____,x2=________.6.已知一个矩形的长比宽多2cm,其面积为8cm2,则此长方形的周长为________.7.一元二次方程x2-2x-m=0可以用公式法解,则m=().A.0B.1C.-1D.±18.用公式法解方程4y2=12y+3,得到()A.y=362B.y=362C.y=3232D.y=32329.已知a、b、c是△ABC的三边长,且方程a(1+x2)+2bx-c(1-x2)=0的两根相等,则△ABC为()A.等腰三角形B.等边三角形C.直角三角形D.任意三角形10.不解方程,判断所给方程:①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实数根的方程有()A.0个B.1个C.2个D.3个11.解下列方程;(1)2x2-3x-5=0(2)2t2+3=7t(3)x2+16x-13=0(4)x2-22x+1=0(5)0.4x2-0.8x=1(6)23y2+13y-2=0二、拓广探索:12.当x=_______时,代数式13x与2214xx的值互为相反数.13.若方程x-4x+a=0的两根之差为0,则a的值为________.14.如图,是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注代数式的值相等,求x的值.三、智能升级:15.小明在一块长18m宽14m的空地上为班级建造一个花园,所建花园占空地面积的12,请你求出图中的x.16.要建一个面积为150m2的长方形养鸡场,为了节约材料,鸡场的一边靠着原有的一堵墙,墙长为am,另三边用竹篱笆围成,如果篱笆的长为35m.(1)求鸡场的长与宽各是多少?(2)题中墙的长度a对解题有什么作用.