《全等三角形》整章水平测试题一、认认真真选,沉着应战!1.下列命题中正确的是()A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形对应角的平分线相等2.下列各条件中,不能作出惟一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角D.已知三边4.下列各组条件中,能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.AB=DE,BC=EF,△ABC的周长=△DEF的周长D.∠A=∠D,∠B=∠E,∠C=∠F5.如图,在△ABC中,∠A:∠B:∠C=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()A.1:2B.1:3C.2:3D.1:46.如图,∠AOB和一条定长线段A,在∠AOB内找一点P,使P到OA、OB的距离都等于A,做法如下:(1)作OB的垂线NH,使NH=A,H为垂足.(2)过N作NM∥OB.(3)作∠AOB的平分线OP,与NM交于P.(4)点P即为所求.其中(3)的依据是()A.平行线之间的距离处处相等B.到角的两边距离相等的点在角的平分线上C.角的平分线上的点到角的两边的距离相等D.到线段的两个端点距离相等的点在线段的垂直平分线上7.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于()A.1︰1︰1B.1︰2︰3C.2︰3︰4D.3︰4︰58.如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CB=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1个B.2个C.3个D.4个9.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在同一条直线上,如图,可以得到EDCABC,所以ED=AB,因此测得ED的长就是AB的长,判定EDCABC的理由是()A.SASB.ASAC.SSSD.HL10.如图所示,△ABE和△ADC是△ABC分别沿着AB,AC边ACBDFENAMCBFCEABD翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为()A.80°B.100°C.60°D.45°.二、仔仔细细填,记录自信!11.如图,在△ABC中,AD=DE,AB=BE,∠A=80°,则∠CED=_____.12.已知△DEF≌△ABC,AB=AC,且△ABC的周长为23cm,BC=4cm,则△DEF的边中必有一条边等于______.13.在△ABC中,∠C=90°,BC=4CM,∠BAC的平分线交BC于D,且BD︰DC=5︰3,则D到AB的距离为_____________.14.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出_____个.ABCDE15.如图,ADAD,分别是锐角三角形ABC和锐角三角形ABC中,BCBC边上的高,且ABABADAD,.若使ABCABC△≌△,请你补充条件___________.(填写一个你认为适当的条件即可)17.如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________.19.如右图,已知在ABC中,90,,AABACCD平分ACB,DEBC于E,若15cmBC,则DEB△的周长为cm.20.在数学活动课上,小明提出这样一个问题:∠B=∠C=900,E是BCADEABCD'A'B'D'CABCDEDCBAEBC的中点,DE平分∠ADC,∠CED=350,如图,则∠EAB是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.三、平心静气做,展示智慧!21.如图,公园有一条“Z”字形道路ABCD,其中AB∥CD,在,,EMF处各有一个小石凳,且BECF,M为BC的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.22.如图,给出五个等量关系:①ADBC②ACBD③CEDE④DC⑤DABCBA.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明.已知:求证:证明:23.如图,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,DN和EM相交于点C.求证:点C在∠AOB的平分线上.四、发散思维,游刃有余!24.(1)如图1,以ABC△的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连结EG,试判断ABC△与AEG△面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地多少平方米?参考答案一、1—5:DCDCD6—10:BCBBAABDCEOMNDACBEMFABCEDAGFCBDE(图1)二、11.100°12.4cm或9.5cm13.1.5cm14.415.略16.15AD17.互补或相等18.18019.1520.350三、21.在一条直线上.连结EM并延长交CD于'F证'CFCF.22.情况一:已知:ADBCACBD,求证:CEDE(或DC或DABCBA)证明:在△ABD和△BAC中ADBCACBD∵,ABBA∴△ABD≌△BAC∴CABDBAAEBE∴∴ACAEBDBE即CEED情况二:已知:DCDABCBA,求证:ADBC(或ACBD或CEDE)证明:在△ABD和△BAC中DC,DABCBAABAB∵∴△ABD≌△BAC∴ADBC23.提示:OM=ON,OE=OD,∠MOE=∠NOD,∴△MOE≌△NOD,∴∠OME=∠OND,又DM=EN,∠DCM=∠ECN,∴△MDC≌△NEC,∴MC=NC,易得△OMC≌△ONC(SSS)∴∠MOC=∠NOC,∴点C在∠AOB的平分线上.四、24.(1)解:ABC△与AEG△面积相等过点C作CMAB⊥于M,过点G作GNEA⊥交EA延长线于N,则AMC90ANG四边形ABDE和四边形ACFG都是正方形90180BAECAGABAEACAGBACEAG,,180EAGGANBACGANACMAGN△≌△FAGCBDEMN1122ABCAEGCMGNSABCMSAEGN△△,ABCAEGSS△△(2)解:由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和这条小路的面积为(2)ab平方米.