第1页共14页过程能力概述(ProcessCapabilityOverview)在过程处于统计控制状态之后,即生产比较稳定时,你很可能希望知道过程能力,也即满足规格界限和生产良品的能力。你可以将过程变差的宽度与规格界限的差距进行对比来片段过程能力。在评价其能力之前,过程应该处于控制状态,否则,你得出的过程能力的估计是不正确的。你可以画能力条形图和能力点图来评价过程能力,这些图形可以帮助你评价数据的分布并验证过程是否受控。你还可以计算过程指数,即规范公差与自然过程变差的比值。过程指数是评价过程能力的一个简单方法。因为它们无单位,你可以用能力统计量来比较不同的过程。一、选择能力命令(Choosingacapabilitycommand)Minitab提供了许多不同的能力分析命令,你可以根据数据的属性及其分布来选择适当的命令。你可以为以下几个方面进行能力分析:正态或Weibull概率模型(适合于测量数据)很可能来源于具有明显组间变差的总体的正态数据二项分布或泊松概率分布模型(适合于属性数据或计数数据)注:如果你的数据倾斜严重,你可以利用Box-Cox转换或使用Weibull概率模型。在进行能力分析时,选择正确的分布是必要的。例如:Minitab提供基于正态和Weibull概率模型的能力分析。使用正态概率模型的命令提供更完整的一系列的统计量,但是你的数据必须近似服从正态分布以保证统计量适合于这些数据。举例来说,Analysis(Normal)利用正态概率模型来估计期望的PPM。这些统计量的结实依赖于两个假设:数据来自于稳定的过程,且近似服从的正态分布。类似地,CapabilityAnalysis(Weibull)利用Weibull分布模型计算PPM。在两种情况下,统计的有效性依赖于假设的分布的有效性。如果数据倾斜严重,基于正态分布的概率会提供对实际的超出规格的概率做比较差的统计。这种情况下,转化数据使其更近似于正态分布,或为数据选择不同的概率模型。在Minitab中,你可以用“Box-Coxpowertransformation”或Weibull概率模型。Non-normaldata对这两个模型进行了比较。如果你怀疑过程具有较明显的组间变差,使用CapabilityAnalysis(Between/Within)或CapabilitySixpack(Between/Within)。子组内部的随机误差之上,子组数据可能还有子组之间的随机变差。对子组变差的两个来源的理解可以为过程潜在能力提供更实际的估计。CapabilityAnalysis(Between/Within)和CapabilitySixpack(Between/Within)计算了组间和组内标准差,然后再估计长期的标准差。Minitab还为属性数据和计数数据进行能力分析,基于二项分布和泊松概率模型。例如:产品可以根据标准判定为合格和不合格(使用CapabilityAnalysis(Binomial)).。你还可以根据缺陷的数量进行分类(使用CapabilityAnalysis第2页共14页(Poisson)).二、能力分析命令概况CapabilityAnalysis(Normal)为单个测量结果画一张能力条形图,图上包含基于过程均值和标准差的正态曲线。这可以帮助你对正态性假设进行视觉上的评价。报告还包括一张过程能力统计量的表,包括组内和组间统计量。CapabilityAnalysis(Between/Within)为单个测量结果画一张能力条形图,图上包含基于过程均值和标准差的正态曲线。这可以帮助你对正态性假设进行视觉上的评价。报告还包括一张组间/组内和长期过程能力统计量的列表。CapabilitySixpack(Normal)同时显示以下图形,以及能力统计量的子集:-一张Xbar(orIndividuals),RorS(orMovingRange),和runchart,可用来验证过程是否处于控制状态;-一个能力条形图和正态概率图,可以帮助验证数据是否服从正态分布;-一个能力图,显示过程变差与规范界限的相对性。CapabilitySixpack(Between/Within)适合于组间变差比较明显的子组数据。CapabilitySixpack(Between/Within)同时显示以下图形,以及能力统计量的子集:-一张IndividualsChart,MovingRangeChart,andRChartorSChart,可用来验证过程是否处于控制状态;-一个能力条形图和正态概率图,可以帮助验证数据是否服从正态分布;-一个能力图,显示过程变差与规范界限的相对性。CapabilitySixpack(Weibull)同时显示以下图形,以及能力统计量的子集:-一张Individuals,R-(orMovingRange),andrunchart,可用来验证过程是否处于控制状态;-一个能力条形图和Weibull概率图,可以帮助验证数据是否服从Weibull分布;-一个能力图,显示过程变差与规范界限的相对性。CapabilityAnalysis(Weibull)为单个测量结果画一张能力条形图,图上包含基于过程形状和大小的Weibull曲线。这可以帮助你对Weibull分布的假设进行直观的评价。报告还包括一张长期过程能力统计量的表。CapabilityAnalysis(Binomial)适合于数据由不合格品的数量相对于抽取的全部样本数组成时。报告画了一张P图,可以帮助你验证过程是否处于控制状态,以及一张不合格品率的累积图,不合格品率的条形图,以及不合格品率图。CapabilityAnalysis(Poisson)适用于数据为单位缺陷数。报告画了一张U图,可以帮助你可以帮助你验证过程是否处于控制状态,还包括一张累积DPU(defectsperunit)图,DPU条形图和缺陷率图。第3页共14页MINITAB过程能力分析(ProcessCapabilityAnalysis)1、CapabilityAnalysis(Normal)[概述]CapabilityAnalysis(Normal)用于对来自于正态分布的数据或Box-Cox转换后的数据进行能力分析。分析报告包括一张带两条正态曲线的能力条形图,一张长期和组内能力统计量的列表。两条正态曲线分别与过程均值和组内标准差、过程均值和长期标准差相对应。报告还包括过程数据的统计量,如过程均值,目标,组内和长期标准差,过程规范,观察到的能力,以及期望的组内和长期能力。因此,该报告可用于直观评价过程是否服从正态分布,是否以目标值为中心,是否具备持续满足过程规范要求的能力。一个假设数据来自于正态分布的模型适合于大多数过程数据。如果数据是倾斜的,参见Non-normaldata下面的讨论。[例]假设你在一个汽车制造厂的机器组装部门工作。某个零件,凸轮轴的长度的工程规范为600+-2mm。长期以来,该轴的长度均超出规范的要求,导致生产线上装配性性、高废弃和重工率。在对记录清单检查后,你发现该零件有两个供应商。Xbar-R图告诉你供应商2的零件失控,因此你决定停止接受供应商2的零件直至产品受控为止。在去除供应商2后,不良装配的数量明显减少,但问题并未完全消除。你决定通过能力研究来观察供应商1是否具备满足工程规范的能力。1OpentheworksheetCAMSHAFT.MTW.2ChooseStatQualityToolsCapabilityAnalysis(Normal).3InSinglecolumn,enterSupp1.InSubgroupsize,enter5.4InLowerspec,enter598.InUpperspec,enter602.5ClickOptions.InTarget(addsCpmtotable),enter600.ClickOKineachdialogbox.[结果]第4页共14页602601600599598TargetUSLLSLProcessCapabilityAnalysisforSupp1PPMTotalPPMUSLPPMLSLPPMTotalPPMUSLPPMLSLPPMTotalPPMUSLPPMLSLPpkPPLPPUPpCpmCpkCPLCPUCpStDev(Overall)StDev(Within)SampleNMeanLSLTargetUSL6367.3539.196328.163631.5710.513621.0610000.000.0010000.000.830.831.321.070.870.900.901.421.160.6208650.576429100599.548598.000600.000602.000Exp.OverallPerformanceExp.WithinPerformanceObservedPerformanceOverallCapabilityPotential(Within)CapabilityProcessDataWithinOverall[结果分析]如果你想解释过程能力统计量,数据应该近似服从正态分布。这个要求得到了满足,这点可以从带正态曲线的条形图上看出来。但是你可以发现过程均值(599.548)比目标值低,切分布的左边落在了下规范界限之外。这个均值意味着你有些时候可以看到不符合最低规范(598mm)的零件。Cpk指数表明过程是否可以生产在公差界限内的产品。供应商1的CPK为0.90,表明他们需要通过减少变差和向目标值靠拢来改善其过程。同样,Likewise,PPMLSL—每百万零件中质量特性值低于下规范界限的零件数—是3621.06.。这意味着大约3621个零件不满足下规范界限(598mm)。既然供应商1是你最好的供应商,你应该与它们一起共同改善其过程,从而改善自己的过程。2、CapabilityAnalysis(WeibullDistribution)[概述]CapabilityAnalysis(Weibull)命令用于对来自于Weibull分布的数据进行过程能力分析。分析报告包括:一个带Weibull曲线的能力条形图,一张长期能力统计表。Weibull曲线是根据过程形状和规模(大小)构造的。报告还包括过程数据的统计量,如均值,形状,目标,过程规范,实际的长期能力,以及观察到的和期望的长期能力。因此报告可直观地评价过程相对于目标的分布,数据是否服从Weibull分布,过程是否具备持续满足过程规范的能力。在Weibull模型中,Minitab计算长期过程统计量,Pp,Ppk,PPU,andPPL。计算是基于形状的最大可能估计和规模参数,而不是象正态分布中的均值和变差。如果数据不服从正态分布,你可以选择Box-Cox转换来应用CapabilityAnalysis(NormalDistribution)命令来计算组内统计量,Cp和Cpk。Foracomparisonofthemethodsusedfornon-normaldata,参见Non-normaldata对两种方法的比较。第5页共14页[例]假设你在生产地板瓷砖的公司工作,你对瓷砖表面的翘曲比较关心。为保证产品质量,你每个工作日测量10个瓷砖的翘曲量,连续测量了10天。数据的条形图表明它们不是来自于正态分布(参见ExampleofacapabilityanalysiswithaBox-Coxtransformation)。因此你决定基于Weibull概率模型进行能力分析。1OpentheworksheetTILES.MTW.2ChooseStatQualityToolsCapabilityAnalysis(Weibull).3InSinglecolumn,enterWarping.4InUpperspec,type8.ClickOK.[结果]1086420USLUSLProcessCapabilityAnalysisforWarpingCalculationsBased