高中必修一函数全章知识点整理

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1函数复习主要知识点一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。注意点:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同1、下列各对函数中,相同的是()A、2163(),()fxxgxxB、1,0(),()1,0xxfxgxxxC、vvvguuuf11)(,11)(D、f(x)=x,2)(xxf2、}30|{},20|{yyNxxM给出下列四个图形,其中能表示从集合M到集合N的函数关系的有()A、0个B、1个C、2个D、3个二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)指数函数的底数必须大于零且不等于1;1.函数234yxx的定义域为2求函数定义域的两个难点问题(1)()x已知f的定义域是[-2,5],求f(2x+3)的定义域。(2)(21)xx已知f-的定义域是[-1,3],求f()的定义域xxxx1211122211112222yyyy3OOOO2例2设12()(1)fxx,则(2)xf的定义域为__________变式练习:24)2(xxf,求)(xf的定义域。三.函数的奇偶性1.定义:设y=f(x),x∈A,如果对于任意x∈A,都有()()fxfx,则称y=f(x)为偶函数。如果对于任意x∈A,都有()()fxfx,则称y=f(x)为奇函数。2.性质:①y=f(x)是偶函数y=f(x)的图象关于y轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称②看f(x)与f(-x)的关系1、已知函数)(xf是定义在),(上的偶函数.当)0,(x时,4)(xxxf,则当),0(x时,)(xf.2、已知定义域为R的函数12()2xxbfxa是奇函数。(Ⅰ)求,ab的值;(Ⅱ)若对任意的tR,不等式22(2)(2)0fttftk恒成立,求k的取值范围;3、若奇函数))((Rxxf满足1)2(f,)2()()2(fxfxf,则)5(f_______3四、函数的单调性1、函数单调性的定义:2设xgfy是定义在M上的函数,若f(x)与g(x)的单调性相反,则xgfy在M上是减函数;若f(x)与g(x)的单调性相同,则xgfy在M上是增函数。1判断函数)()(3Rxxxf的单调性。2函数2(62)12xxy的单调增区间是________3(高考真题)已知(31)4,1(),1xaxaxfxax是(,)上的减函数,那么a的取值范围是()(A)(0,1)(B)1(0,)3(C)11[,)63(D)1[,1)6五.二次函数(涉及二次函数问题必画图分析)1.二次函数f(x)=ax2+bx+c(a≠0)的图象是一条抛物线,对称轴abx2,顶点坐标)44,2(2abacab2.二次函数与一元二次方程关系一元二次方程)0(02acbxax的根为二次函数f(x)=ax2+bx+c(a≠0)0y的x的取值。4一元二次不等式)0(02cbxax的解集(a0)二次函数△情况一元二次不等式解集Y=ax2+bx+c(a0)△=b2-4acax2+bx+c0(a0)ax2+bx+c0(a0)图象与解△021xxxxx或21xxxx△=00xxx△0R1、已知函数54)(2mxxxf在区间),2[上是增函数,则)1(f的范围是()(A)25)1(f(B)25)1(f(C)25)1(f(D)25)1(f2、方程0122mxmx有一根大于1,另一根小于1,则实根m的取值范围是_______六.指数式1.幂的有关概念(1)零指数幂)0(10aa(2)负整数指数幂10,nnaanNa(3)正分数指数幂0,,,1mnmnaaamnNn;(5)负分数指数幂110,,,1mnmnmnaamnNnaa(6)0的正分数指数幂等于0,0的负分数指数幂没有意义.52.有理数指数幂的性质10,,rsrsaaaarsQ20,,srrsaaarsQ30,0,rrrabababrQ3.根式根式的性质:当n是奇数,则aann;当n是偶数,则00aaaaaann(1)213323121)()1.0()4()41(baab十.指数函数名称指数函数一般形式y=ax(a1)y=ax(0a1)定义域(-∞,+∞)值域(0,+∞)过定点(0,1)图象单调性在(-∞,+∞)上为增函数在(-∞,+∞)上为减函数值分布X0时0y1,x0时,y1,x=0,y=1X0时y1,x0时,0y1,x=0,y=12.比较两个幂值的大小,是一类易错题,解决这类问题,首先要分清底数相同还是指数相同,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系(对数式比较大小同理)记住下列特殊值为底数的函数图象:2、研究指数函数问题,尽量化为同底,并注意对数问题中的定义域限制3、指数函数中的绝大部分问题是指数函数与其他函数的复合问题,讨论复合函数的单调性是解决问题的重要途径。1、(1)12253xyx的定义域为_______;(2)312xy的值域为_________;(3)2()2xxy的递增区间为___________,值域为___________62、(1)112042xx,则________x3、要使函数ayxx421在1,x上0y恒成立。求a的取值范围。〖2.2〗对数函数(1)对数的定义①若(0,1)xaNaa且,则x叫做以a为底N的对数,记作logaxN,其中a叫做底数,N叫做真数.②负数和零没有对数.③对数式与指数式的互化:log(0,1,0)xaxNaNaaN.(2)几个重要的对数恒等式log10a,log1aa,logbaab.(3)常用对数与自然对数常用对数:lgN,即10logN;自然对数:lnN,即logeN(其中2.71828e…).(4)对数的运算性质如果0,1,0,0aaMN,那么①加法:logloglog()aaaMNMN②减法:logloglogaaaMMNN③数乘:loglog()naanMMnR④logaNaN⑤loglog(0,)bnaanMMbnRb⑥换底公式:loglog(0,1)logbabNNbba且【2.2.2】对数函数及其性质(5)对数函数7函数名称对数函数定义函数log(0ayxa且1)a叫做对数函数图象1a01a定义域(0,)值域R过定点图象过定点(1,0),即当1x时,0y.奇偶性非奇非偶单调性在(0,)上是增函数在(0,)上是减函数函数值的变化情况log0(1)log0(1)log0(01)aaaxxxxxxlog0(1)log0(1)log0(01)aaaxxxxxxa变化对图象的影响在第一象限内,a越大图象越靠低;在第四象限内,a越大图象越靠高.(6)反函数的概念设函数()yfx的定义域为A,值域为C,从式子()yfx中解出x,得式子()xy.如果对于y在C中的任何一个值,通过式子()xy,x在A中都有唯一确定的值和它对应,那么式子()xy表示x是y的函数,函数()xy叫做函数()yfx的反函数,记作1()xfy,习惯上改写成1()yfx.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()yfx中反解出1()xfy;01xyO(1,0)1xlogayx01xyO(1,0)1xlogayx8③将1()xfy改写成1()yfx,并注明反函数的定义域.(8)反函数的性质①原函数()yfx与反函数1()yfx的图象关于直线yx对称.②函数()yfx的定义域、值域分别是其反函数1()yfx的值域、定义域.③若(,)Pab在原函数()yfx的图象上,则'(,)Pba在反函数1()yfx的图象上.④一般地,函数()yfx要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数yx叫做幂函数,其中x为自变量,是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)都有定义,并且图象都通过点(1,1).③单调性:如果0,则幂函数的图象过原点,并且在[0,)上为增函数.如果0,则幂函9数的图象在(0,)上为减函数,在第一象限内,图象无限接近x轴与y轴.④奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当qp(其中,pq互质,p和qZ),若p为奇数q为奇数时,则qpyx是奇函数,若p为奇数q为偶数时,则qpyx是偶函数,若p为偶数q为奇数时,则qpyx是非奇非偶函数.⑤图象特征:幂函数,(0,)yxx,当1时,若01x,其图象在直线yx下方,若1x,其图象在直线yx上方,当1时,若01x,其图象在直线yx上方,若1x,其图象在直线yx下方.

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功