21.1一元二次方程

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

21.1一元二次方程学习目标•1、熟记一元二次方程定义及其有关概念,会判别什么是一元二次方程•2、会将一元二次方程化成一般形式导入新课复习引入1.什么叫方程?我们学过哪些方程?含有未知数的等式叫做方程.我们学过的方程有一元一次方程,二元一次方程(组)及分式方程,其中前两种方程是整式方程.2.什么叫一元一次方程?含有一个未知数,且未知数的次数是1的整式方程叫做一元一次方程.指导自学:•认真看课本P1-3,要求:•1.会根据实际问题列出一元二次方程并思考问题2中单循环赛与双循环赛的区别,并能化成一般形式•2.熟记一元二次方程的定义,一般形式及各项的系数并思考“云图”中为什么规定a≠0?•3.认真看例题,会将任意的一元二次方程化成一般形式•4.理解并识记什么是一元二次方程的根,学会如何判定给定的x的值是否是一元二次方程的根。•7分钟后比谁能熟记什么是一元二次方程,它的一般形式及各项的系数概念并会做与例题类似的题讲授新课一元二次方程的概念一问题1初中同学毕业20周年聚会,如果参加聚会的有x个人,每两人之间都握一次手,共握了21次手,请你列出符合上述条件的方程,并判断方程是什么类型?解析:设参加聚会有x人,每个人都要与(x-1)人握手,由于甲与乙握手和乙与甲握手是同一次握手,所以全部握手次数是.1(1)2xx解:根据题意,列方程:1(1)212xx整理得:2112122xx化简,得:2420xx①该方程中有未知数的个数和最高次数各是多少?问题2有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个正方形,然后将四周凸出部分折起,就能制作一个无盖方盒,如果要制作的方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形?请根据题意列出方程.100cm50cmx3600cm2解:设切去的正方形的边长为xcm,则盒底的长为(100-2x)cm,宽为(50-2x)cm,根据方盒的底面积为3600cm2,得3600)250)(2100(xx2753500xx②整理,得2430014000xx化简,得该方程中有未知数的个数和最高次数各是多少?观察与思考2420xx①2753500xx②方程①、②都不是一元一次方程.那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?特点:①都是整式方程;②只含一个未知数;③未知数的最高次数是2.知识要点一元二次方程的概念像这样的等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程叫做一元二次方程.一元二次方程的一般形式是ax2+bx+c=0(a≠0)二次项系数一次项系数常数项检测:1.课本P41、22.(1)已知x=-1是一元二次方程的一个根,求m的值(2)已知m是方程的一个根,则代数式的值为多少?012mxx022xxmm23.已知关于x的方程,当k______时,它是一元二次方程23210kxx典例精析222221A.0B.350C.(1)(2)0D.0xxxyyxxxaxbxc例1下列选项中,关于x的一元二次方程的是()C不是整式方程含两个未知数化简整理成x2-3x+2=0少了限制条件a≠0提示判断一个方程是不是一元二次方程,首先看是不是整式方程;如是再进一步化简整理后再作判断.例2将方程3x(x-1)=5(x+2)化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数.解:去括号,得3x2-3x=5x+10.移项、合并同类项,得一元二次方程的一般形式3x2-8x-10=0.其中二次项是3x2,系数是3;一次项是-8x,系数是-8;常数项是-10.系数和项均包含前面的符号.注意问题:在一块宽20m、长32m的矩形空地上,修筑宽相等的三条小路(两条纵向,一条横向,纵向与横向垂直),把矩形空地分成大小一样的六块,建成小花坛.如图要使花坛的总面积为570m2,问小路的宽应为多少?3220x1.若设小路的宽是xm,那么横向小路的面______m2,纵向小路的面积是m2,两者重叠的面积是m2.32x2.由于花坛的总面积是570m2.你能根据题意,列出方程吗?整理以上方程可得:思考:2×20x32×20-(32x+2×20x)+2x2=5702x2x2-36x+35=0③3220x想一想:还有其它的列法吗?试说明原因.(20-x)(32-2x)=57032-2x20-x3220一元二次方程的根二一元二次方程的根使一元二次方程等号两边相等的未知数的值叫作一元二次方程的解(又叫做根).例3下面哪些数是方程x2–x–6=0的解?-4,-3,-2,-1,0,1,2,3,4解:3和-2.你注意到了吗?一元二次方程可能不止一个根.1.a为何值时,下列方程为一元二次方程?(1)ax2-x=2x2(2)(a-1)x|a|+1-2x-7=0.解:(1)将方程式转化为一般形式,得(a-2)x2-x=0,所以当a-2≠0,即a≠2时,原方程是一元二次方程;(2)由∣a∣+1=2,且a-1≠0知,当a=-1时,原方程是一元二次方程.方法点拨:用一元二次方程的定义求字母的值的方法:根据未知数的最高次数等于2,列出关于某个字母的方程,再排除使二次项系数等于0的字母的值.当堂训练:2.方程(2a-4)x2-2bx+a=0,(1)在什么条件下此方程为一元二次方程?(2)在什么条件下此方程为一元一次方程?解(1)当2a-4≠0,即a≠2时是一元二次方程(2)当a=2且b≠0时是一元一次方程4.已知方程5x²+mx-6=0的一个根为4,则m的值为_______.3.关于x的方程(k2-1)x2+2(k-1)x+2k+2=0,当k时,是一元二次方程.当k时,是一元一次方程.≠±1=-15.(1)如图,已知一矩形的长为200cm,宽150cm.现在矩形中挖去一个圆,使剩余部分的面积为原矩形面积的四分之三.求挖去的圆的半径xcm应满足的方程(其中π取3).解:设由于圆的半径为xcm,则它的面积为3x2cm2.整理,得225000x①根据题意有,4315020031502002x200cm150cm(2)如图,据某市交通部门统计,前年该市汽车拥有量为75万辆,两年后增加到108万辆.求该市两年来汽车拥有量的年平均增长率x应满足的方程.解:该市两年来汽车拥有量的年平均增长率为x整理,得22550110xx②根据题意有,1081752x6.若关于x的一元二次方程(m+2)x2+5x+m2-4=0有一个根为0,求m的值.二次项系数不为零不容忽视解:将x=0代入方程m2-4=0,解得m=±2.∵m+2≠0,∴m≠-2,综上所述:m=2.已知关于x的一元二次方程ax2+bx+c=0(a≠0)一个根为1,求a+b+c的值.解:由题意得2110abc0abc即思考:1.若a+b+c=0,你能通过观察,求出方程ax2+bx+c=0(a≠0)的一个根吗?解:由题意得2110abc即0abc∴方程ax2+bx+c=0(a≠0)的一个根是1.2.若a-b+c=0,4a+2b+c=0,你能通过观察,求出方程ax2+bx+c=0(a≠0)的一个根吗?x=2或x=-1拓展训练:课堂小结一元二次方程概念①是整式方程;②含一个未知数;③最高次数是2.一般形式ax2+bx+c=0(a≠0)•其中(a≠0)是一元二次方程的必要条件;•确定一元二次方程的二次项系数、一次项系数及常数项要先化为一般式.根使方程左右两边相等的未知数的值.作业:必做题:课本P41、2、3选做题:课本P46

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功