基于复变量求导法的参数识别计算法高效伟大连理工大学航空航天学院在弹塑性理论中,Mohr-Coulomb屈服准则为tannc其中,c为粘聚力,为内摩擦角。正算法:反算法:已知c、等,求解位移、应力等。已知位移、应力等,求解c,等。),,,(21niiixxxuuR定义残差:Newton-Raphson迭代公式其中:iu(位移、应力)测量值iu(位移、应力)计算值反算参数nxxx,,,21对于第k+1次迭代,使用泰勒级数展开式:0111nJJJikinJJJikikixxuRxxRRR矩阵形式:kinJJJiRxxu1RxxuRxuxxuxuTT方程组:变量更新:ikikixxx1nmmmnnxuxuxuxuxuxuxuxuxuxu)(,,)(,)()(,,)(,)()(,,)(,)(212221212111xxxxxxxxx灵敏度矩阵:其中m为测量数据个数,n为反算参数个数。实函数的复变量求导法(CVDM)•LynessJN,MolerCB.Numericaldifferentiationofanalyticfunctions.SIAMJournalofNumericalAnalysis1967;4:202-210.•GaoXW,LiuDD,ChenPC.InternalstressesininelasticBEMusingcomplex-variabledifferentiation.ComputationalMechanics2002;28:40-46.•GaoXW.Anewinverseanalysisapproachformulti-regionheatconductionBEMusingcomplex-variable-differentiationmethod.EngineeringAnalysiswithBoundaryElements2005;29:788–795.•郭力,高效伟.复变量求导法灵敏度分析及弹塑性参数反演。东南大学学报(自然科学版),38(1):141-145,2008.一阶导数:优点:1)一阶导数无相消误差;2)求导只需要函数计算;3)能用正算程序进行反分析计算。...dxfdhdxfdhIdxfdhdxdfIh)x(f)Ihx(f4443332222462h))Ihx(fIm(dxdf2222h))]Ihx(fRe()x(f[dxfd对于任一实函数f(x),将所求导变量x施加一个很小的虚部h(通常),并将其展成泰勒级数得:2010h分别取其虚部和实部得:二阶导数:CVDM的解析算例I函数:xzyxzyxf2),,(zxyxzyxf2),,(导数:IzxyhxzyhxzhIxyhIxzyhIxf)2(])[()()(),,(222zxyhzyhIxf2)),,(Im(CVDM结果:IzxyhxzyhxzhIxyhIxzyhIxf)2(])[()()(),,(222CVDM的解析算例II函数:2xzf(x,y,z)esin(xy).2222233625106(xIh)zxzxzxzf(xIh,y,z)esin[(xIh)y]ecos(hz)cosh(hy)sin(xy)I{h[zeycos(xy)]h[zeycos(xy)][h]}2223624106xzxzIm(f(xIh,y,z))zeycos(xy)h[zeycos(xy)][h]h导数:)cos(),,(22xyyzexzyxfxz2222233625106(xIh)zxzxzxzf(xIh,y,z)esin[(xIh)y]ecos(hz)cosh(hy)sin(xy)I{h[zeycos(xy)]h[zeycos(xy)][h]}2223624106xzxzIm(f(xIh,y,z))zeycos(xy)h[zeycos(xy)][h]hCVDM结果:CVDM和有限差分法FDM的比较REALXV,FUNCDATAX,Y,Z,H/1.,2.,3.,1.E-5/XV=X+HDFDX=(FUNC(XV,Y,Z)-FUNC(X,Y,Z))/HWRITE(*,*)DFDXSTOPENDFUNCTIONFUNC(X,Y,Z)REALX,FUNCFUNC=EXP(X*Z)+SIN(X*Y*Y)ENDCOMPLEXXV,FUNCDATAX,Y,Z,H/1.,2.,3.,1.E-5/XV=CMPLX(X,H)DFDX=AIMAG(FUNC(XV,Y,Z))/HWRITE(*,*)DFDXSTOPENDFUNCTIONFUNC(X,Y,Z)COMPLEXX,FUNCFUNC=CEXP(X*Z)+CSIN(X*Y*Y)ENDhCVDMFDM1.E-257.6323058.616161.E-357.6419457.742091.E-457.6420357.668431.E-557.6420457.694701.E-657.6420454.333431.E-757.6420466.497151.E-857.642040.01.E-2057.642040.01.E-3057.642040.01.E-4057.642040.01.E-50NaNNaN在点(1,2,3)处导数的解析解值为:57.64204有限元修改源程序来自下列文献:Owen,DRJ,Hinton,E.FiniteElementsinPlasticity:TheoryandPractice.PineridgePressLimited,Swansea,UK,1980.E=21000=0.3C=26=30弹性模量残差比E0=18000,R=6.47E-6弹性模量残差比E0=25000,R=8.07E-6泊松比残差比0=0.1,R=6.99E-6泊松比残差比0=0.45,R=5.67E-6粘聚力残差比C0=21,R=6.53E-6粘聚力残差比C0=32,R=6.97E-6内摩擦角残差比0=22,R=7.09E-6内摩擦角残差比0=40,R=8.15E-6粘聚力内摩擦角粘聚力内摩擦角C0=22,0=5,R=8.45E-6粘聚力内摩擦角粘聚力内摩擦角C0=28,0=47,R=3.62E-6