初中最值问题专项训练-1-解决最值问题的常用方法一、配方法配方法是数学中的一种重要解题思想方法,将已知代数式(等式)配成若干个完全平方式的形式,结合非负数性质,从而使问题得到解决。例1设x、y为实数,代数式5x2+4y2-8xy+2x+4的最小值为_______。二、分类讨论法当解决的问题存在一些不确定因素,这时常用分类讨论法按一定的标准或原则分为若干类、然后逐类求解,再综合这几点的结论从而求解。例2已知0≤a≤4,那么23aa的最大值等于()(A)1(B)5(C)8(D)3三、数形结合法有些代数问题条件中的数量关系有明显的几何意义,或以某种方式与几何图形相关联,则可以通过作出与其相关的几何图形,将代数问题的条件及数量关系直接在图形中表现出来,从而利用几何关系来求解。例3使224(8)16xx取最小值的实数x的值为_________。四、函数模型法函数模型的应用是数学应用问题的主要类型,从数学角度理解问题,分析问题中的变量和常量,将实际问题抽象成数学问题建立函数模型,再根据函数的性质,结合自变量的取值范围从而求出最值。例4某工厂计划为震区生产A,B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5m3,一套B型桌椅(一桌三椅)需木料0.7m3,工厂现有库存木料302m3。(1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A型桌椅的生产成本为100元,运费2元;每套B型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用。(总费用=生产成本+运费)例5已知:抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0)。(1)求该抛物线的解析式;初中最值问题专项训练-2-(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ。当△CQE的面积最大时,求点Q的坐标。五、不等式法一些要求最大利润,最优方案生活问题,可根据题意把实际问题转化为不等式模型,从而求出某些量的取值范围,再结合函数性质求解。例6:某加工厂以每吨3000元的价格购进50吨原料进行加工,若进行粗加工,每吨加工费为600元,需13天,每吨售价4000元;若进行精加工,每吨加工费用为900元,需12天,每吨售价为4500元,现将这50吨原料全部加工完。(1)设其中粗加工x吨,获利y元,求y与x的函数关系式。(2)如果必须在20天内完,如何安排生产才能获得最大利润?最大利润是多少?六、垂线段法在一些几何问题中要求线段、周长、面积最小值时,可通过把相关线段特殊化,化为垂线段,根据垂线段最短的性质从而得解。例7:边长为a的菱形ABCD中,∠DAB=60°,E是AD上异于A、D两点的一个动点,F是CD上的动点,且满足AE+CF=a,如图。(1)证明:不论E、F怎样移动,△BEF总是正三角形,求出△BEF面积最小值。七、判别式法求某些字母代数式的最值时可设整个代数式为一个新的字母再变形转化为某个字母的一元二次方程,进而根据一元二次方程根的判别式去求出新字母的取值范围,即确定原代数式的取值范围,从而得解。例8:设a,b为实数,那么代数式222aabbab的最小值是多少?八、对称变换法求某些几何图形中的线段的和的最小值时,可采用轴对称变换的方法将其中一条线段变换,进而把两条线段合并成一条线段根从而求出最值。例9:如图,正方形ABC的边长为3,点E在BC上,且BE=2,点P在BD上移动,则PE+PC的最小值是多少?ADCBEF初中最值问题专项训练-3-九、换元法对于形如yaxbcxd的函数,一般可考虑用换元法将其转化为二次函数,通过求二次函数的最值来达到求原函数的最值的目的。例10求函数y=x-12x的最值。十、消元法对于有条件等式的多元问题,常通过消元法把多个元素转化为以某一元素为主元的等式,再结合已知条件,经过合理的运算,使问题逐步简化,再求解。例11a、b、c是非负实数,并且满足3a+2b+c=5,2a+b-3c=1,设m=3a+b-7c,记x为m的最小值,y为m的最大值,则xy=_________。十一、枚举法有些求最值问题可根据已知条件列举所有可能出现的情形,再通过计算后进行比较结果从而求出。例12:若a、b、c、d是四个不相等的自然数,且abcd=2583,求S=a+b+c+d的最值。十二、估算法对所要考察的代数式的取值情况,进行恰当的估算,确定其范围,可促使问题简明快捷地获解。例13:五个互不相等自然的平均数是15,中位数是18,这五个数中最大数的最大值为()(A)35(B)36(C)37(D)38十三、转化法(可化为一元二次方程的方程)转化与化归是解分式方程和高次方程(次数高于二次的整式方程)的基本思想.解分式方程,通过去分母和换元;解高次方程,利用因式分解和换元,转化为一元二次方程或一元一次方程去求解.例14:若0515285222xxxx,则1522xx的值为.沙场练兵1.若关于x的方程0111xax有增根,则a的值为;若关于x的方程122xax曾初中最值问题专项训练-4-=一1的解为正数,则a的取值范围是.2.解方程121)10)(9(1)2)(1(1)1(1)1(1xxxxxxxx得.3.已知方程mxmx2123有一个根是2,则m=.4.方程9733322xxxx的全体实数根的积为()A.60B.一60C.10D.一105.解关于x的方程1112xxxkxx不会产生增根,则是的值是()A.2B.1C.不为2或一2D.无法确定6.已知实数x满足01122xxxx,那么xx1的值为()A.1或一2B.一1或2C.1D.一27.(1)如表,方程1、方程2、方程3、……,是按照一定规律排列的一列方程,解方程1,并将它的解填在表中的空格处;(2)若方程11bxxa(ba)的解是1x=6,2x=10,求a、b的值.该方程是不是(1)中所给的一列方程中的一个方程?如果是,它是第几个方程?(3)请写出这列方程中的第n个方程和它的解,并验证所写出的解适合第n个方程.序号方程方程的解11216xx1x=2x=21318xx1x=42x=6314110xx1x=52x=8…………8.解下列方程:(1)619122112222xxxxxxx;(2)081318218111222xxxxxx;(3)120)4)(3)(2)(1(xxxx;(4)1)1(3)1(222xxxx.9.已知关于x的方程02212222mxxmxx,其中m为实数,当m为何值时,方程恰有三个互不相等的实数根?求出这三个实数根.10.方程222121xxxx的解是.初中最值问题专项训练-5-11.解方程214127165123112222xxxxxxxx得.12.方程87329821xxxxxxxx的解是.13.若关于x的方程03121422xxa恰有两个不同的实数解,则实数a的取值范围是.14.解下列方程:(1)6)1)(43()76(2xxx;(2)222222)243()672()43(xxxxxx;(3)3)1(22xxx;(4)310221xxx.15.当a取何值时,方程2212212xxaxxxxx有负数解?16.已知01585234xxxx,求xx1的值.17.已知:如图,四边形ABCD为菱形,AF⊥上AD交BD于E点,交BC于点F.(1)求证:AD2=21DE×DB;(2)过点E作EG⊥AE交AB于点G,若线段BE、DE(BEDE)的长为方程02322mmxx(m0)的两个根,且菱形ABCD的面积为36,求EG的长.