12.1-实数的概念说课

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

112.1实数的概念教材本节课是七年级下第12章第一节《实数》的内容,是在学生学习了平方根、立方根以后,接触过“√2”、“π”等具体的无理数的基础上,引入了无理数的概念,从而将数从有理数扩展到实数。在中学阶段,大多数问题都是在实数的范围内研究的,因此,它对今后的数学学习有着非常重要的意义。无理数的引入,数系的扩展充满着对立和统一的辩证关系及分类思想,实数和数轴上的点一一对应蕴含着数形结合的思想。所以这节课不仅仅是完善学生的知识结构,而且还是培养学生想象能力,渗透数学思想,感受数学美的有效载体,也是发展学生逻辑思维能力的重要内容。教学目标1.通过动手操作经历发现无理数的过程,了解无理数是客观存在的数,了解无理数的发现是人类理性思维的胜利.2.通过对比分析,理解无理数是无限不循环小数,会辨别一个数是否是无理数.3.了解数系从整数到有理数、再到实数的扩展过程,理解实数系统的结构,体会分类思想.教学重点及难点理解无理数是无限不循环小数,会辨别一个数是否是无理数.教学流程设计本节课通过创设问题情境,引导学生回顾认识数的过程,通过合作探索,经历无理数的产生过程,精心设问,适时、适度采用激励性语言,提高学生学习积极性,从而较好地完成实数概念的建构,达到教学目标。并结合计算器、多媒体等现代教学手段实施教学,体现直观性。教学过程设计一、复习引入教师设问:(1)我们已经学习了有理数,你能举出几个有理数吗?(2)有理数都可以表示为哪种统一的形式?(3)是不是所有的数都能表示为分数)0,(qqpqp都是整数,且的形式?答:不是,无限不循环小数(如:π)就不能表示为该形式.[说明]前两个问题带领学生复习已有的相关知识;第三个问题设置疑问,引发学生的思考,带着这样的困惑和好奇学习新知.二、学习新知1.操作剪拼正方形,引出2.要求:能否将两个边长为1的正方形剪拼成一个大正方形?怎样剪拼?它的面积是多少?边长如何用代数符号表示?师:如果设该正方形的边长为x,那么22x,即x是这样一个数,它的平方等于2.这个数表示面积为2的正方形的边长,是现实世界中真实存在的线段长度.由于这个数和2有关,我们现在用2(读作“根号2”)来表示.追问:面积为3的正方形,它的边长又如何表示?若面积为5呢?类似的,分别用3(读作“根号3”)、5(读作“根号5”)来表示.22.尝试说明2是一个无限不循环小数.要求学生尝试完成以下填空:假设2是一个有理数,设)0,(2qqpqp表示整数且互素,同时,等式两边分别平方,可以得到2=,则2p=,由此可知p一定是一个(填“奇”或“偶”)数,再设p=2n(n表示整数),代入上式,那么2q=,同理可知q也是.这时发现p、q有了共同的因数2,这与之前假设中的“”矛盾.因此假设不成立,即2不是,而是无限不循环小数.师生总结:从以上填空可以说明2是无限不循环小数.3.请你再举出几个无限不循环小数的例子.除了以上提到的2,我们熟悉的圆周率也是无限不循环小数.此外,我们还可以构造几个无限不循环小数,如:0.202002000200002……、0.123456789101112131415161718192021222324……等.三、形成概念1.无理数无限不循环小数叫做无理数.无理数也有正、负之分.只有符号不同的两个无理数,它们互为相反数.2.实数有理数和无理数统称为实数.实数可以这样分类:正有理数有理数零——有限小数或无限循环小数实数负有理数正无理数无理数——无限不循环小数负无理数四、巩固练习1.将下列各数填入适当的括号内:0、-3、2、6、3.14159、32.0、722、5、π、0.3737737773….有理数:﹛﹜;无理数:﹛﹜;正实数:﹛﹜;负实数:﹛﹜;非负数:﹛﹜;整数:﹛﹜.2.判断下列说法是否正确,并说明理由:(1)无限小数都是无理数;(2)无理数都是无限小数;(3)正实数包括正有理数和正无理数;(4)实数可以分为正实数和负实数两类.{{{33.请构造几个大小在3和4之间的无理数.4.用“是”、“不是”、“统称”、“包括”、“叫做”填空,并体会这些词的含义:(1)2分数.(2)0有理数.(3)无限不循环小数无理数.(4)实数有理数和无理数.(5)正整数、0和负整数整数.(6)有理数有限小数或无限循环小数.五、自主小结请学生谈谈:你学到了什么?你有什么样的疑问?你有什么收获、体会或想法?你还想知道什么?六、布置作业布置作业:数学练习册12.1习题教学设计说明本节课的知识形成过程:首先通过操作,得到面积为2的正方形,提出“正方形的边长怎样表示”的问题,引出边长为“2”.然后通过与有理数比较分析并且说理,推出2只能是一个无限不循环小数,即无理数.紧接着再举几个无理数的例子.(即:第一,探究生活中是否存在无理数.通过操作产生面积为2的正方形,由正方形的边长引出“2”;第二,探究2是什么样的数.通过与有理数比较分析,推出2只能是一个无限不循环小数,即无理数;第三,探究是否存在其他的无理数.举面积为3、5、6、7、8、10的正方形边长及圆周率π为例,说明无理数普遍存在.)在此基础上,引进无理数,归纳得到实数的概念,体验数的扩充的过程和必要性.(1)动手操作和问题讨论的目的,是让学生感受2的现实意义,并认识到用已有的有理数不能准确表示这一线段长度,因而需要寻找一种新的数来解决问题;同时调动学生学习和思维的积极性,帮助学生体验无理数的产生过程,引导学生用科学的眼光认识世界.本节中“”的出现先于定义,暂只作为一个记号,其含义待下一节课详述.(2)考虑到学生层次相对较好,教学中以2为例,教师与学生一起通过说理,说明了2不是有理数,而是一个无限不循环小数.对此,可结合本班学生实际特点开展教学.(3)把无限不循环小数叫做无理数,是与有理数的意义进行比较后,通过理性思考得到的,无需做更多地解释.无理数的相反数的概念在“实数运算”一节有定义,这里只对特殊的数作说明.(4)实数的分类办法,建议与有理数分类方法进行比较.实数的分类能帮助学生更好认识实数,构建数系知识结构,应予重视.在此要帮助学生领会数的分类应遵循的规则,领会分类思想.(5)练习从不同的角度帮助学生理解实数系中各类数的概念.练习1中722应给予关注,它是一个无限循环小数,学生容易将它归入无理数范畴.练习2的(3)、(4)两小题,建议与实数的分类作比较分析,即可得出正确结论.在此可引导学生总结实数的另一种分类办法.

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功