2.一阶和二阶电路的零输入响应、零状态响应和全响应的概念及求解重点3.一阶和二阶电路的阶跃响应概念及求解1.动态电路方程的建立及初始条件的确定返回含有动态元件电容和电感的电路称为动态电路。1.动态电路7-1动态电路的方程及其初始条件当动态电路状态发生改变时(换路),需要经历一个变化过程才能达到新的稳定状态。这个变化过程称为电路的过渡过程。下页上页特点返回Oti2S/RUiS12()iURR过渡期为零电阻电路下页上页+-USR1R2(t=0)i返回电容电路下页上页S+–uCUSRCi(t=0)+-(t→∞)+–uCUSRCi+-返回i=0,uC=USi=0,uC=0S接通电源后很长时间,电容充电完毕,电路达到新的稳定状态:S未动作前,电路处于稳定状态:前一个稳定状态过渡状态新的稳定状态t1USuCtO?iRUS有一过渡期uL=0,i=US/Ri=0,uL=0S接通电源后很长时间,电路达到新的稳定状态,电感视为短路:S未动作前,电路处于稳定状态:电感电路下页上页前一个稳定状态过渡状态新的稳定状态t1US/RitO?uLSU有一过渡期返回-S+–uLUSRLi(t=0)+(t→∞)+–uLUSRLi+-下页上页S未动作前,电路处于稳定状态:uL=0,i=US/RS断开瞬间i=0,uL=∞工程实际中在切断电容或电感电路时会出现过电压和过电流现象。注意返回(t→∞)+–uLUSRLi+-S+–uLUSRLi(t∞)+过渡过程产生的原因电路内部含有储能元件L、C,电路在换路时能量发生变化,而能量的储存和释放都需要一定的时间来完成。tWpΔΔ电路结构、状态发生变化换路支路接入或断开电路参数变化p∞0Δt下页上页返回)(ddStuutuRCCC应用KVL和电容的VCR得若以电流为变量)(d1StutiCRittuCitiRd)(dddS2.动态电路的方程下页上页(t0)+–uCuSRCi+-)(StuuRiCtuCiCddRC电路返回)(StuuRiL)(ddStutiLRi应用KVL和电感的VCR得tiLuLdd若以电感电压为变量)(dStuutuLRLLttutuuLRLLd)(dddS下页上页RL电路返回(t0)+–uLuSRi+-含源电阻电路一个动态元件一阶电路下页上页结论含有一个动态元件电容或电感的线性电路,其电路方程为一阶线性常微分方程,称为一阶电路。返回)(ddddS22tuutuRCtuLCCCC)(StuuuRiCL二阶电路tuCiCdd22ddddtuLCtiLuCL下页上页RLC电路应用KVL和元件的VCR得含有二个动态元件的线性电路,其电路方程为二阶线性常微分方程,称为二阶电路。返回(t0)+–uLuSRi+-CuC+-一阶电路一阶电路中只有一个动态元件,描述电路的方程是一阶线性微分方程。①描述动态电路的电路方程为微分方程。②动态电路方程的阶数通常等于电路中动态元件的个数。0)(dd01ttexatxa0)(dddd01222ttexatxatxa二阶电路二阶电路中有二个动态元件,描述电路的方程是二阶线性微分方程。下页上页结论返回高阶电路电路中有多个动态元件,描述电路的方程是高阶微分方程。11101ddd()0dddnnnnnnxxxaaaaxettttt动态电路的分析方法①根据KVL、KCL和VCR建立微分方程。下页上页返回复频域分析法时域分析法②求解微分方程。经典法状态变量法数值法卷积积分拉普拉斯变换法状态变量法傅氏变换本章采用工程中高阶微分方程应用计算机辅助分析求解。下页上页返回稳态分析和动态分析的区别稳态动态换路发生很长时间后状态微分方程的特解恒定或周期性激励换路发生后的整个过程微分方程的通解任意激励S01ddUxatxa0ddtxt∞S0Uxa下页上页直流时返回①t=0+与t=0-的概念认为换路在t=0时刻进行0-换路前一瞬间0+换路后一瞬间3.电路的初始条件)(lim)0(00tfftt)(lim)0(00tfftt初始条件为t=0+时,u、i及其各阶导数的值。下页上页注意Of(t))0()0(ff0-0+)0()0(fft返回图示为电容放电电路,电容原先带有电压Uo,求开关闭合后电容电压随时间的变化。例1-1解0ddCCutuRC)0(0tuRiC特征根方程:01RCpRCp1通解:oUkRCtptCkktuee)(代入初始条件得:RCtCUtue)(o在动态电路分析中,初始条件是得到确定解答的必需条件。下页上页明确R-+CiuC(t=0)返回1()()dtCutiC∞0011()d()dtiiCC∞d)(1)0(0tCiCut=0+时刻d)(1)0()0(00iCuuCCiuCC+-②电容的初始条件0下页上页当i()为有限值时返回q(0+)=q(0-)uC(0+)=uC(0-)换路瞬间,若电容电流保持为有限值,则电容电压(电荷)换路前、后保持不变。q=CuC电荷守恒下页上页结论返回1()()dtLLituL∞0011()d()dtLLuuLL∞d)(1)0()0(00uLiiLL③电感的初始条件t=0+时刻0d)(1)0(0tLLuLi下页上页当uL为有限值时返回iLuLL+-L(0+)=L(0-)iL(0+)=iL(0-)磁链守恒换路瞬间,若电感电压保持为有限值,则电感电流(磁链)换路前、后保持不变。下页上页结论返回=LiLL(0+)=L(0-)iL(0+)=iL(0-)qC(0+)=qC(0-)uC(0+)=uC(0-)④换路定律①电容电流和电感电压为有限值是换路定律成立的条件。换路瞬间,若电感电压保持为有限值,则电感电流(磁链)换路前、后保持不变。换路瞬间,若电容电流保持为有限值,则电容电压(电荷)换路前、后保持不变。②换路定律反映了能量不能跃变。下页上页注意返回⑤电路初始值的确定(2)由换路定律uC(0+)=uC(0-)=8V0.2mAmA10810)(0iC(1)由0-电路求uC(0-)uC(0-)=8V(3)由0+等效电路求iC(0+)iC(0+)iC(0-)例1-2求iC(0+)。电容开路下页上页+-10ViiC+uC-S10k40k+-10V+uC-10k40k+8V-0+等效电路+-10ViiC10k电容用电压源替代注意返回(0)(0)LLuuiL(0+)=iL(0-)=2AV8V42)0(Lu例1-3t=0时闭合开关S,求uL(0+)。①先求A2A4110)0(Li②应用换路定律:电感用电流源替代)0(Li解电感短路下页上页iL10V14+-③由0+等效电路求uL(0+)2A+uL-10V14+-注意返回iL+uL-L10VS14+-求初始值的步骤:1.由换路前电路(稳定状态)求uC(0-)和iL(0-)。2.由换路定律得uC(0+)和iL(0+)。3.画0+等效电路。4.由0+电路求所需各变量的0+值。(2)电容(电感)用电压源(电流源)替代。(1)换路后的电路;(取0+时刻值,方向与原假定的电容电压、电感电流方向相同)。下页上页小结返回iL(0+)=iL(0-)=iSuC(0+)=uC(0-)=RiSuL(0+)=-RiS求iC(0+),uL(0+)。0)0(SSRRiiiC例1-4解由0-电路得下页上页由0+电路得RiS0-电路uL+–iCRiSRiS+–返回S(t=0)+–uLiLC+–uCLRiSiCV24V122)0()0(CCuuA12A4/48)0()0(LLii例1-5求S闭合瞬间各支路电流和电感电压。解A8A3/)2448()0(CiA20A)812()0(iV24V)12248()0(Lu下页上页由0-电路得由0+电路得iL2+-48V32+-uC返回iL+uL-LS2+-48V32C12A24V+-48V32+-iiC+-uL求S闭合瞬间流过它的电流值。解①确定0-值A1A2020)0()0(LLiiV10)0()0(CCuu②给出0+等效电路A2A)110101020()0(SiV1010)0()0(LLiuA110/)0()0(CCui下页上页例1-6iL+20V-10+uC1010-返回1A10VSi+uL-iC+20V-10+1010-iL+20V-LS10+uC1010C-7-2一阶电路的零输入响应换路后外加激励为零,仅有动态元件初始储能产生的电压和电流。1.RC电路的零输入响应已知uC(0-)=U00CRuutuCiCdduR=Ri零输入响应下页上页iS(t=0)+–uRC+–uCR返回0)0(0ddUuutuRCCCCRCp1特征根特征方程RCp+1=0tRCA1eptCAue则下页上页代入初始值uC(0+)=uC(0-)=U0A=U0返回iS(t=0)+–uRC+–uCR0ee00tIRURuiRCtRCtC0e0tUuRCtCRCtRCtCRURCCUtuCie)1(edd00下页上页或返回tU0uCOI0tiO令=RC,称为一阶电路的时间常数。秒伏安秒欧伏库欧法欧RC①电压、电流是随时间按同一指数规律衰减的函数。连续函数跃变②响应与初始状态成线性关系,其衰减快慢与RC有关。下页上页表明返回时间常数的大小反映了电路过渡过程时间的长短=RC大——过渡过程时间长小——过渡过程时间短电压初值一定:R大(C一定)i=u/R放电电流小放电时间长U0tuCO小大C大(R一定)W=Cu2/2储能大11RCp物理含义下页上页返回①:电容电压衰减到原来电压36.8%所需的时间。工程上认为,经过35,过渡过程结束。U00.368U00.135U00.05U00.007U0t0235tCUu0eU0U0e-1U0e-2U0e-3U0e-5下页上页注意返回=t2-t1t1时刻曲线的斜率等于211100)()(1edd11tttutuUtuCCtttCU0tuCOt1t2)(368.0)(12tutuCC次切距的长度下页上页RCtUu0Ce返回②时间常数的几何意义:③能量关系20dRWiRt∞电容不断释放能量被电阻吸收,直到全部消耗完毕。设uC(0+)=U0电容放出能量:2021CU电阻吸收(消耗)能量:200(e)dtRCURtR∞2021CU2200edtRCUtR∞2200(e)2tRCURCR∞下页上页返回uCR+-Ci例2-1图示电路中的电容原充有24V电压,求S闭合后,电容电压和各支路电流随时间变化的规律。解这是一个求一阶RC零输入响应问题,有+uC45F-i1t0等效电路C0e0tRCuUt下页上页i3S3+uC265F-i2i1s20s45V240RCU返回0Ve2420tutC分流得Ae64201tCui202114eA3tii203122eA3tii下页上页返回+uC45F-i1i3S3+uC265F-i2i1下页上页例2-2求:(1)图示电路S闭合后各元件的电压和电流随时间变化的规律;(2)电容的初始储能和最终时刻的储能及电阻的耗能。解这是一个求一阶RC零输入响应问题,有F42112μCCCCCu(0+)=u(0-)=-20V返回U1(0-)=4VuSC1=5F++---iC2=20FU2(0-)=24V250k+下页上页