22.2二次函数与一元二次方程

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

九年级数学22.2二次函数与一元二次方程西平中学:柴亚军回顾旧知2yaxbxc二次函数的一般式:(a≠0)______是自变量,____是____的函数。xyx当y=0时,ax²+bx+c=0ax²+bx+c=0这是什么方程?我们学习了“一元二次方程”一元二次方程与二次函数有什么关系?复习.1、一元二次方程ax2+bx+c=0的根的情况可由确定。>0=0<0有两个不相等的实数根有两个相等的实数根没有实数根b2-4ac以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t–5t2考虑下列问题:(1)球的飞行高度能否达到15m?若能,需要多少时间?(2)球的飞行高度能否达到20m?若能,需要多少时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?实际问题解:(1)当h=15时,20t–5t2=15t2-4t+3=0t1=1,t2=3当球飞行1s和3s时,它的高度为15m.1s3s15m(2)当h=20时,20t–5t2=20t2-4t+4=0t1=t2=2当球飞行2s时,它的高度为20m.2s20m(3)当h=20.5时,20t–5t2=20.5t2-4t+4.1=0因为(-4)2-4×4.10,所以方程无实根。球的飞行高度达不到20.5m.20.5m(4)当h=0时,20t–5t2=0t2-4t=0t1=0,t2=4当球飞行0s和4s时,它的高度为0m,即0s时,球从地面飞出,4s时球落回地面。0s4s0m从上面发现,二次函数y=ax2+bx+c何时为一元二次方程?一般地,当y取定值时,二次函数为一元二次方程。如:y=5时,则5=ax2+bx+c就是一个一元二次方程。为一个常数(定值)已知二次函数,求自变量的值解一元二次方程的根二次函数与一元二次方程的关系(1)1、二次函数y=x2+x-2,y=x2-6x+9,y=x2–x+1的图象如图所示。(1).每个图象与x轴有几个交点?(2).一元二次方程?x2+x-2=0,x2-6x+9=0有几个根?验证一下一元二次方程x2–x+1=0有根吗?(3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?22yxx269yxx21yxx答:2个,1个,0个.,2,2.2无实数根个相等的根个根边观察边思考22yxx269yxx21yxx(3),二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?二次函数与x轴交点坐标相应方程的根22yxx269yxx21yxx(-2,0),(1,0)x1=-2,x2=1(3,0)x1=x2=3无交点无实根抛物线y=ax2+bx+c与x轴交点的横坐标是方程ax2+bx+c=0的根。下列二次函数的图象与x轴有交点吗?若有,求出交点坐标.(1)y=2x2+x-3(2)y=4x2-4x+1(3)y=x2–x+1探究xyo令y=0,解一元二次方程的根(1)y=2x2+x-3解:当y=0时,2x2+x-3=0(2x+3)(x-1)=0x1=,x2=1-32所以与x轴有交点,有两个交点。xyoy=a(x-x1)(x-x1)二次函数的两点式(2)y=4x2-4x+1解:当y=0时,4x2-4x+1=0(2x-1)2=0x1=x2=所以与x轴有一个交点。12xyo(3)y=x2–x+1解:当y=0时,x2–x+1=0所以与x轴没有交点。xyo因为(-1)2-4×1×1=-30确定二次函数图象与x轴的位置关系解一元二次方程的根二次函数与一元二次方程的关系(2)有两个根有一个根(两个相同的根)没有根有两个交点有一个交点没有交点b2–4ac0b2–4ac=0b2–4ac0二次函数y=ax2+bx+c的图象和x轴交点的三种情况与一元二次方程根的关系ax2+bx+c=0的根y=ax2+bx+c的图象与x轴若抛物线y=ax2+bx+c与x轴有交点,则________________。b2–4ac≥0△>0△=0△<0oxy△=b2–4ac课堂小结二次函数y=ax2+bx+c的图象和x轴交点的三种情况与一元二次方程根的关系:二次函数y=ax2+bx+c的图象和x轴交点一元二次方程ax2+bx+c=0的根一元二次方程ax2+bx+c=0根的判别式Δ=b2-4ac有两个交点有两个不相等的实数根只有一个交点有两个相等的实数根没有交点没有实数根b2–4ac0b2–4ac=0b2–4ac02.抛物线y=2x2-3x-5与x轴有无交点?若无说出理由,若有求出交点坐标?1.一元二次方程3x2+x-10=0的两个根是x1=-2,x2=5/3,那么二次函数y=3x2+x-10与x轴的交点坐标是_____.归纳:一元二次方程ax2+bx+c=0的两个根为x1,x2,则抛物线y=ax2+bx+c与x轴的交点坐标是(x1,0),(x2,0)(2.5,0),(-1,0)(-2,0)(5/3,0)有).1.0(0222精确到的实数根利用函数图象求方程xx解:7.2,7.0022.7.2,7.0,222122xxxxxxxy的实数为方程 大约是轴的公共点的横坐标它与的图象作思路:(1)先作出图象;(2)写出交点的坐标;(3)得出方程的解.随堂练习1.不与x轴相交的抛物线是()A.y=2x2–3B.y=-2x2+3C.y=-x2–3xD.y=-2(x+1)2-32.若抛物线y=ax2+bx+c=0,当a0,c0时,图象与x轴交点情况是()A.无交点B.只有一个交点C.有两个交点D.不能确定DC3.如果关于x的一元二次方程x2-2x+m=0有两个相等的实数根,则m=___,此时抛物线y=x2-2x+m与x轴有__个交点.4.已知抛物线y=x2–8x+c的顶点在x轴上,则c=__.11165.若抛物线y=x2+bx+c的顶点在第一象限,则方程x2+bx+c=0的根的情况是_____.b2-4ac06.抛物线y=2x2-3x-5与y轴交于点____,与x轴交于点.7.一元二次方程3x2+x-10=0的两个根是x1=-2,x2=5/3,那么二次函数y=3x2+x-10与x轴的交点坐标是________.(0,-5)(5/2,0)(-1,0)(-2,0)(5/3,0)8.已知抛物线y=ax2+bx+c的图象如图,则关于x的方程ax2+bx+c-3=0根的情况是()A.有两个不相等的实数根B.有两个异号绝对值相等的实数根C.有两个相等的实数根D.没有实数根xAoyx=-13-11.3.9.根据下列表格的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)一个解x的范围是()A.3x3.23B.3.23x3.24C.3.24x3.25D.3.25x3.26x3.233.243.253.26y=ax2+bx+c-0.06-0.020.030.09C10.已知抛物线和直线相交于点P(3,4m)。(1)求这两个函数的关系式;(2)当x取何值时,抛物线与直线相交,并求交点坐标。88221kxxy12mxy解:(1)因为点P(3,4m)在直线上,所以,解得m=1所以,P(3,4)。因为点P(3,4)在抛物线上,所以有4=18-24+k+8解得k=2所以(2)依题意,得解这个方程组,得所以抛物线与直线的两个交点坐标分别是(3,4),(1.5,2.5)。12mxy134mm11xy88221kxxy108221xxy108212xxyxy4311yx5.25.122yx习题答案1.(1)略.(2)1,3.2.(1)x1=1,x2=2;(2)x1=x2=-3;(3)没有实数根;(4)x1=-1,x2=.3.(1)略.(2)10m.4.x=112练习:看谁算的又快又准。1.不与x轴相交的抛物线是()Ay=2x2–3By=-2x2+3Cy=-x2–2xDy=-2(x+1)2-32.如果关于x的一元二次方程x2-2x+m=0有两个相等的实数根,则m=__,此时抛物线y=x2-2x+m与x轴有_个交点.3.已知抛物线y=x2–8x+c的顶点在x轴上,则c=____.D11164.抛物线y=x2-3x+2与y轴交于点____,与x轴交于点____.(0,2)(1,0)(2,0))43,21(第四象限第三象限    第二象限第一象限       的顶点在抛物线则没有实数根的一元二次方程关于顶点坐标为则其经过原点抛物线个个   D.个   C.个      轴的交点个数有与抛物线....).(,0)3(.__________,33)2(321.0.).(32)1(22222DCBAnxynxxmxmyBAxxyxxmxxCA?3.求抛物线①与y轴的交点坐标;②与x轴的两个交点间的距离.③何时y>0?2218yx练习1.已知抛物线y=x2-mx+m-1.(2)若抛物线与y轴交于正半轴,则m______;(1)若抛物线经过坐标系原点,则m______;(3)若抛物线的对称轴为y轴,则m______。(4)若抛物线与x轴只有一个交点,则m_______.=1>1=2=02、不论x为何值时,函数y=ax2+bx+c(a≠0)的值永远为正的条件是______a0,△0(4)已知二次函数y=ax+bx+c的图象如图所示,则一元二次方程ax+bx+c=0的解是.XY0522(5)若抛物线y=ax2+bx+c,当a0,c0时,图象与x轴交点情况是()A无交点B只有一个交点C有两个交点D不能确定CX1=0,x2=5.),0,1(,)2(;,:)1(.2.422点坐标求为点坐标且、轴有两个公共点若该二次函数的图象与轴总有公共点该二次函数的图象与对于任意实数求证已知二次函数BABAxxmmxymx.,02402,0:)1(9)(22222轴总有公共点抛物线与取何值不论得令证明xmmxymmmmx)0,2(1,20)1)(2(,02120)0,1()2(212222212点坐标为  即上在抛物线BmmmmmxyAmmmmmx5:已知二次函数y=2x2-(m+1)x+m-1(1)求证:无论m为何值,函数y的图像与x轴总有交点,并指出当m为何值时,只有一个交点。(2)当m为何值时,函数y的图像经过原点。(3)指出(2)的图像中,使y<0时,x的取值范围及使y>0时,x的取值范围?的面积等于)几秒后(的函数关系式;与)写出(同时出发:、分别从、,如果时间为运动的面积为的速度移动,设以的边向点开始沿从点点的速度移动以边向点开始沿从点点中在mcmcPBQxyBAQPxsyPBQscmCBCBQscmBABAPBABC22821/2,/1,90,.5●请你把这节课你学到了东西告诉你的同桌,然后告诉老师?交点b2-4ac0b2-4ac0b2-4ac=0两个交点没有交点一个交点二次函数与x轴的交点当二次函数y=ax2+bx+c中y的值确定,求x的值时,二次函数就变为一元二次方程。即当y取定值时,二次函数就为一元二次方程。二次函数与一元二次方程的关系二次函数与x轴的交点的横坐标是一元二次方程的解讨论这节课应有以下内容:1.已知函数的图象如图所示,那么关于的方程的根的情况是()2yaxbxc220axbxcA.无实数根B.有两个相等实根C.有两个异号实数根D.有两个同号不等实数根D2.抛物线与轴只有一个公共点,则m的值为.228yxxm83.如图,抛物线的对称轴是直线且经过点(3,0),则的值为()A.0B.-1C.1D.2)0(2acbxaxy1xcba

1 / 43
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功