初二数学-直角三角形练习题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页(共35页)一.选择题(共5小题)1.已知下列语句:(1)有两个锐角相等的直角三角形全等;(2)一条斜边对应相等的两个直角三角形全等;(3)三个角对应相等的两个三角形全等;(4)两个直角三角形全等.其中正确语句的个数为()A.0B.1C.2D.32.对于条件:①两条直角边对应相等;②斜边和一锐角对应相等;③斜边和一直角边对应相等;④直角边和一锐角对应相等;以上能断定两直角三角形全等的有()A.1个B.2个C.3个D.4个3.如图,∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,AE=5cm,BD=2cm,则DE的长是()A.8B.5C.3D.24.如图,△ABC中,AB=AC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则DE的长为()A.10B.6C.8D.55.如图,在△ABC中,CD⊥AB于点D,BE⊥AC于点E,F为BC的中点,DE=5,BC=8,则△DEF的周长是()第2页(共35页)A.21B.18C.13D.15二.填空题(共10小题)6.如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4.直线l上有一点C在点P右侧,PC=4cm,过点C作射线CD⊥l,点F为射线CD上的一个动点,连结AF.当△AFC与△ABQ全等时,AQ=cm.7.如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A点出发以2/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E运动秒时,△DEB与△BCA全等.8.如图,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,下面四个结论:①∠ABE=∠BAD;②△CEB≌△ADC;③AB=CE;④AD﹣BE=DE.正确的是(将你认为正确的答案序号都写上).第3页(共35页)9.如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线ED交AB于点E,交BC于点D,若CD=3,则BD的长为.10.如图,在△ABC中,∠ACB=90°,∠B=30°,BC=6,CD为AB边上的高,点P为射线CD上一动点,当点P运动到使△ABP为等腰三角形时,BP的长度为.11.如图,在直角△ABC中,已知∠ACB=90°,AB边的垂直平分线交AB于点E,交BC于点D,且∠ADC=30°,BD=18cm,则AC的长是cm.12.如图,在△ABC中,AD为∠CAB平分线,BE⊥AD于E,EF⊥AB于F,∠DBE=∠C=15°,AF=2,则BF=.13.如图,四边形ABCD中,∠A=∠C=90°,∠ABC=60°,AD=4,CD=10,则BD的长等于.第4页(共35页)14.如图所示,在平面直角坐标系中,矩形ABCD定点A、B在y轴、x轴上,当B在x轴上运动时,A随之在y轴运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为.15.如图,在△ABC中,AB=AC=7,BC=5,AF⊥BC于F,BE⊥AC于E,D是AB的中点,则△DEF的周长是.三.解答题(共11小题)16.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.第5页(共35页)17.如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC.(1)求C点的坐标;(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,PA为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求OP﹣DE的值.18.如图,已知在△ABC中,AB=AC,∠BAC=90°,分别过B、C向过A的直线作垂线,垂足分别为E、F.(1)如图①过A的直线与斜边BC不相交时,求证:EF=BE+CF;(2)如图②过A的直线与斜边BC相交时,其他条件不变,若BE=10,CF=3,求:FE长.19.如图,△ABC中,∠A=30°,∠C=90°,BE平分∠ABC,AC=9cm,求CE的长.第6页(共35页)20.如图所示,AB=AC,∠A=120°,点E在AB边上,EF垂直平分AB,交BC于F,EG⊥BC,垂足为G,若GF=4,求CF的长.21.已知∠MAN,AC平分∠MAN.(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.22.如图,在△ABC中,∠B=90°,BC=12厘米,AB的值是等式x3﹣1=215中的x的值.点P从点A开始沿AB边向B点以1.5厘米∕秒的速度移动,点Q从点B开始沿BC边向C点以2厘米∕秒的速度移动.①求AB的长度﹙厘米﹚.②如果P、Q分别从A、B两点同时出发,问几秒钟后,△PBQ是等腰三角形并求出此时这个三角形的面积.23.已知:如图,∠BAC=∠BDC=90°,点E在BC上,点F在AD上,BE=EC,AF=FD.求证:EF⊥AD.第7页(共35页)24.如图,△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点.(1)求证:MN⊥DE;(2)连结DM,ME,猜想∠A与∠DME之间的关系,并写出推理过程;(3)若将锐角△ABC变为钝角△ABC,如图,上述(1)(2)中的结论是否都成立?若结论成立,直接回答,不需证明;若结论不成立,说明理由.25.如图,△ABC中,CF⊥AB,垂足为F,M为BC的中点,E为AC上一点,且ME=MF.(1)求证:BE⊥AC;(2)若∠A=50°,求∠FME的度数.26.如图,在Rt△ABC中,∠ABC=90°,点D是AC的中点,作∠ADB的角平分线DE交AB于点E,(1)求证:DE∥BC;(2)若AE=3,AD=5,点P为线段BC上的一动点,当BP为何值时,△DEP为等腰三角形.请求出所有BP的值.第8页(共35页)第9页(共35页)2017年02月16日精锐教育4的初中数学组卷参考答案与试题解析一.选择题(共5小题)1.(2016秋•东宝区校级期中)已知下列语句:(1)有两个锐角相等的直角三角形全等;(2)一条斜边对应相等的两个直角三角形全等;(3)三个角对应相等的两个三角形全等;(4)两个直角三角形全等.其中正确语句的个数为()A.0B.1C.2D.3【分析】根据全等三角形的判定定理HL、SAS、AAS、ASA分别进行分析即可.【解答】解:(1)有两个锐角相等的直角三角形全等,说法错误;(2)一条斜边对应相等的两个直角三角形全等,说法错误;(3)三个角对应相等的两个三角形全等,说法错误;(4)两个直角三角形全等,说法错误.故选:A.【点评】此题主要考查了直角三角形的判定,关键是掌握三角形全等的判定定理.2.(2015秋•武汉校级期中)对于条件:①两条直角边对应相等;②斜边和一锐角对应相等;③斜边和一直角边对应相等;④直角边和一锐角对应相等;以上能断定两直角三角形全等的有()A.1个B.2个C.3个D.4个【分析】根据直角三角形的判定定理进行选择即可.【解答】解:①两条直角边对应相等,根据“SAS”,正确;②斜边和一锐角对应相等,根据“AAS”,正确;③斜边和一直角边对应相等,根据“HL”,正确;④直角边和一锐角对应相等,根据“ASA”或“AAS”,正确;第10页(共35页)故选D.【点评】本题考查了直角三角形的判定定理,除HL外,一般三角形的全等有四种方法,做题时要结合已知条件与全等的判定方法逐一验证.3.(2014春•栖霞市期末)如图,∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,AE=5cm,BD=2cm,则DE的长是()A.8B.5C.3D.2【分析】根据已知条件,观察图形得∠CAE+∠ACD=∠ACD+∠BCD,∠CAE=∠BCD,然后证△AEC≌△CDB后求解.【解答】解:∵∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,∴∠CAE+∠ACD=∠ACD+∠BCD,∴∠CAE=∠BCD,又∵∠AEC=∠CDB=90°,AC=BC,∴△AEC≌△CDB.∴CE=BD=2,CD=AE=5,∴ED=CD﹣CE=5﹣2=3(cm).故选C.【点评】本题考查了直角三角形全等的判定方法;题目利用全等三角形的判定和性质求解,发现并利用∠CAE+∠ACD=∠ACD+∠BCD,∠CAE=∠BCD,是解题的关键.4.(2016春•罗湖区期末)如图,△ABC中,AB=AC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则DE的长为()第11页(共35页)A.10B.6C.8D.5【分析】由等腰三角形的性质证得BD=DC,根据直角三角形斜边上的中线的性质即可求得结论.【解答】解:∵AB=AC=10,AD平分∠BAC,∴BD=DC,∵E为AC的中点,∴DE=AB=×10=5,故选D.【点评】本题主要考查了等腰三角形的性质,三角形的中位线,熟练掌握三角形的中位线是解决问题的关键.5.(2016秋•苏州期中)如图,在△ABC中,CD⊥AB于点D,BE⊥AC于点E,F为BC的中点,DE=5,BC=8,则△DEF的周长是()A.21B.18C.13D.15【分析】根据直角三角形斜边上的中线等于斜边的一半求出DF、EF,再根据三角形的周长的定义解答.【解答】解:∵CD⊥AB,F为BC的中点,∴DF=BC=×8=4,∵BE⊥AC,F为BC的中点,∴EF=BC=×8=4,∴△DEF的周长=DE+EF+DF=5+4+4=13.故选C.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,是基础题,熟记性质并准确识图是解题的关键.第12页(共35页)二.填空题(共10小题)6.(2016秋•瑞安市校级期中)如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4.直线l上有一点C在点P右侧,PC=4cm,过点C作射线CD⊥l,点F为射线CD上的一个动点,连结AF.当△AFC与△ABQ全等时,AQ=cm.【分析】根据直角三角形的全等的判定解答即可.【解答】解:要使△AFC与△ABQ全等,则应满足,∵AQ:AB=3:4,AQ=AP,PC=4cm,∴AQ=.故答案为:.【点评】此题考查直角三角形的全等问题,关键是根据SAS证明三角形的全等.7.(2015秋•沛县校级月考)如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A点出发以2/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E运动0,2,6,8秒时,△DEB与△BCA全等.【分析】此题要分两种情况:①当E在线段AB上时,②当E在BN上,再分别分成两种情况AC=BE,AC=BE进行计算即可.第13页(共35页)【解答】解:①当E在线段AB上,AC=BE时,△ACB≌△BED,∵AC=4,∴BE=4,∴AE=8﹣4=4,∴点E的运动时间为4÷2=2(秒);②当E在BN上,AC=BE时,∵AC=4,∴BE=4,∴AE=8+4=12,∴点E的运动时间为12÷2=6(秒);③当E在线段AB上,AB=EB时,△ACB≌△BDE,这时E在A点未动,因此时间为0秒;④当E在BN上,AB=EB时,△ACB≌△BDE,AE=8+8=16,点E的运动时间为16÷2=8(秒),故答案为:0,2,6,8.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角

1 / 35
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功